1,347 research outputs found
A review of wetting versus adsorption, complexions, and related phenomena: the rosetta stone of wetting
This paper reviews the fundamental concepts and the terminology of wetting. In particular, it focuses on high temperature wetting phenomena of primary interest to materials scientists. We have chosen to split this review into two sections: one related to macroscopic (continuum) definitions and the other to a microscopic (or atomistic) approach, where the role of chemistry and structure of interfaces and free surfaces on wetting phenomena are addressed. A great deal of attention has been placed on thermodynamics. This allows clarification of many important features, including the state of equilibrium between phases, the kinetics of equilibration, triple lines, hysteresis, adsorption (segregation) and the concept of complexions, intergranular films, prewetting, bulk phase transitions versus “interface transitions”, liquid versus solid wetting, and wetting versus dewetting.Seventh Framework Programme (European Commission) (Grant FP7-NMP-2009-CSA-23348-MACAN
Recommended from our members
High-resolution and high-accuracy topographic and transcriptional maps of the nucleosome barrier.
Nucleosomes represent mechanical and energetic barriers that RNA Polymerase II (Pol II) must overcome during transcription. A high-resolution description of the barrier topography, its modulation by epigenetic modifications, and their effects on Pol II nucleosome crossing dynamics, is still missing. Here, we obtain topographic and transcriptional (Pol II residence time) maps of canonical, H2A.Z, and monoubiquitinated H2B (uH2B) nucleosomes at near base-pair resolution and accuracy. Pol II crossing dynamics are complex, displaying pauses at specific loci, backtracking, and nucleosome hopping between wrapped states. While H2A.Z widens the barrier, uH2B heightens it, and both modifications greatly lengthen Pol II crossing time. Using the dwell times of Pol II at each nucleosomal position we extract the energetics of the barrier. The orthogonal barrier modifications of H2A.Z and uH2B, and their effects on Pol II dynamics rationalize their observed enrichment in +1 nucleosomes and suggest a mechanism for selective control of gene expression
Flavor Mediation Delivers Natural SUSY
If supersymmetry (SUSY) solves the hierarchy problem, then naturalness
considerations coupled with recent LHC bounds require non-trivial superpartner
flavor structures. Such "Natural SUSY" models exhibit a large mass hierarchy
between scalars of the third and first two generations as well as degeneracy
(or alignment) among the first two generations. In this work, we show how this
specific beyond the standard model (SM) flavor structure can be tied directly
to SM flavor via "Flavor Mediation". The SM contains an anomaly-free SU(3)
flavor symmetry, broken only by Yukawa couplings. By gauging this flavor
symmetry in addition to SM gauge symmetries, we can mediate SUSY breaking via
(Higgsed) gauge mediation. This automatically delivers a natural SUSY spectrum.
Third-generation scalar masses are suppressed due to the dominant breaking of
the flavor gauge symmetry in the top direction. More subtly, the
first-two-generation scalars remain highly degenerate due to a custodial U(2)
symmetry, where the SU(2) factor arises because SU(3) is rank two. This
custodial symmetry is broken only at order (m_c/m_t)^2. SUSY gauge coupling
unification predictions are preserved, since no new charged matter is
introduced, the SM gauge structure is unaltered, and the flavor symmetry treats
all matter multiplets equally. Moreover, the uniqueness of the anomaly-free
SU(3) flavor group makes possible a number of concrete predictions for the
superpartner spectrum.Comment: 17 pages, 7 figures, 2 tables. v2 references added, minor changes to
flavor constraints and a little discussion adde
The X-ray Position and Optical Counterpart of the Accretion-Powered Millisecond Pulsar XTE J1814-338
We report the precise optical and X-ray localization of the 3.2 ms
accretion-powered X-ray pulsar XTE J1814-338 with data from the Chandra X-Ray
Observatory as well as optical observations conducted during the 2003 June
discovery outburst. Optical imaging of the field during the outburst of this
soft X-ray transient reveals an R = 18 star at the X-ray position. This star is
absent (R > 20) from an archival 1989 image of the field and brightened during
the 2003 outburst, and we therefore identify it as the optical counterpart of
XTE J1814-338. The best source position derived from optical astrometry is R.A.
= 18h13m39.s04, Dec.= -33d46m22.3s (J2000). The featureless X-ray spectrum of
the pulsar in outburst is best fit by an absorbed power-law (with photon index
= 1.41 +- 0.06) plus blackbody (with kT = 0.95 +- 0.13 keV) model, where the
blackbody component contributes approximately 10% of the source flux. The
optical broad-band spectrum shows evidence for an excess of infrared emission
with respect to an X-ray heated accretion disk model, suggesting a significant
contribution from the secondary or from a synchrotron-emitting region. A
follow-up observation performed when XTE J1814-338 was in quiescence reveals no
counterpart to a limiting magnitude of R = 23.3. This suggests that the
secondary is an M3 V or later-type star, and therefore very unlikely to be
responsible for the soft excess, making synchroton emission a more reasonable
candidate.Comment: Accepted for publication in ApJ. 6 pages; 3 figure
Flavor of quiver-like realizations of effective supersymmetry
We present a class of supersymmetric models which address the flavor puzzle
and have an inverted hierarchy of sfermions. Their construction involves
quiver-like models with link fields in generic representations. The magnitude
of Standard-Model parameters is obtained naturally and a relatively heavy Higgs
boson is allowed without fine tuning. Collider signatures of such models are
possibly within the reach of LHC in the near future.Comment: LaTeX, 17 pages, 3 figures. V2: reference adde
Bounds on SCFTs from Conformal Perturbation Theory
The operator product expansion (OPE) in 4d (super)conformal field theory is
of broad interest, for both formal and phenomenological applications. In this
paper, we use conformal perturbation theory to study the OPE of nearly-free
fields coupled to SCFTs. Under fairly general assumptions, we show that the OPE
of a chiral operator of dimension with its complex
conjugate always contains an operator of dimension less than . Our
bounds apply to Banks-Zaks fixed points and their generalizations, as we
illustrate using several examples.Comment: 36 pages; v2: typos fixed, minor change
On the Spectrum of Direct Gaugino Mediation
In direct gauge mediation, the gaugino masses are anomalously small, giving
rise to a split SUSY spectrum. Here we investigate the superpartner spectrum in
a minimal version of "direct gaugino mediation." We find that the sfermion
masses are comparable to those of the gauginos - even in the hybrid
gaugino-gauge mediation regime - if the messenger scale is sufficiently small.Comment: 21 pages, 4 figures; V2: refs. adde
A Light Stop with Flavor in Natural SUSY
The discovery of a SM-like Higgs boson near 125 GeV and the flavor texture of
the Standard Model motivate the investigation of supersymmetric quiver-like BSM
extensions. We study the properties of such a minimal class of models which
deals naturally with the SM parameters. Considering experimental bounds as well
as constraints from flavor physics and Electro-Weak Precision Data, we find the
following. In a self-contained minimal model - including the full dynamics of
the Higgs sector - top squarks below a TeV are in tension with b->s{\gamma}
constraints. Relaxing the assumption concerning the mass generation of the
heavy Higgses, we find that a stop not far from half a TeV is allowed. The
models have some unique properties, e.g. an enhancement of the h->
b\bar{b},\tau\bar{{\tau}} decays relative to the h->\gamma{\gamma} one, a
gluino about 3 times heavier than the stop, an inverted hierarchy of about 3-20
between the squarks of the first two generations and the stop, relatively light
Higgsino neutralino or stau NLSP, as well as heavy Higgses and a W' which may
be within reach of the LHC.Comment: LaTeX, 22 pages, 4 figures; V2: references adde
SUSY Stops at a Bump
We discuss collider signatures of the "natural supersymmetry" scenario with
baryon-number violating R-parity violation. We argue that this is one of the
few remaining viable incarnations of weak scale supersymmetry consistent with
full electroweak naturalness. We show that this intriguing and challenging
scenario contains distinctive LHC signals, resonances of hard jets in
conjunction with relatively soft leptons and missing energy, which are easily
overlooked by existing LHC searches. We propose novel strategies for
distinguishing these signals above background, and estimate their potential
reach at the 8 TeV LHC. We show that other multi-lepton signals of this
scenario can be seen by currently existing searches with increased statistics,
but these opportunities are more spectrum-dependent.Comment: 23 pages, 7 figures, 3 tables. V2: spectrum discussion corrected,
most of the changes are in Sec. 2. Benchmarks, analysis and conclusions
unchanged. References adde
Reconstruction and thermal stability of the cubic SiC(001) surfaces
The (001) surfaces of cubic SiC were investigated with ab-initio molecular
dynamics simulations. We show that C-terminated surfaces can have different
c(2x2) and p(2x1) reconstructions, depending on preparation conditions and
thermal treatment, and we suggest experimental probes to identify the various
reconstructed geometries. Furthermore we show that Si-terminated surfaces
exhibit a p(2x1) reconstruction at T=0, whereas above room temperature they
oscillate between a dimer row and an ideal geometry below 500 K, and sample
several patterns including a c(4x2) above 500 K.Comment: 12 pages, RevTeX, figures 1 and 2 available in gif form at
http://irrmawww.epfl.ch/fg/sic/fig1.gif and
http://irrmawww.epfl.ch/fg/sic/fig2.gi
- …
