104 research outputs found
Establishing a core outcome set for peritoneal dialysis : report of the SONG-PD (standardized outcomes in nephrology-peritoneal dialysis) consensus workshop
Outcomes reported in randomized controlled trials in peritoneal dialysis (PD) are diverse, are measured inconsistently, and may not be important to patients, families, and clinicians. The Standardized Outcomes in Nephrology-Peritoneal Dialysis (SONG-PD) initiative aims to establish a core outcome set for trials in PD based on the shared priorities of all stakeholders. We convened an international SONG-PD stakeholder consensus workshop in May 2018 in Vancouver, Canada. Nineteen patients/caregivers and 51 health professionals attended. Participants discussed core outcome domains and implementation in trials in PD. Four themes relating to the formation of core outcome domains were identified: life participation as a main goal of PD, impact of fatigue, empowerment for preparation and planning, and separation of contributing factors from core factors. Considerations for implementation were identified: standardizing patient-reported outcomes, requiring a validated and feasible measure, simplicity of binary outcomes, responsiveness to interventions, and using positive terminology. All stakeholders supported inclusion of PD-related infection, cardiovascular disease, mortality, technique survival, and life participation as the core outcome domains for PD
Dual targeting of p53 and c-MYC selectively eliminates leukaemic stem cells
e Glasgow and Manchester Experimental Cancer
Medicine Centres (ECMC), which are funded by CR-UK and the Chief Scientist’s Office (Scotland). We
acknowledge the funders who have contributed to this work: MRC stratified medicine infrastructure award
(A.D.W.), CR-UK C11074/A11008 (F.P., L.E.M.H., T.L.H., A.D.W.); LLR08071 (S.A.A., E.C.); LLR11017
(M.C.); SCD/04 (M.C.); LLR13035 (S.A.A., K.D., A.D.W., and A.P.); LLR14005 (M.T.S., D.V.); KKL690 (L.E.P.);
KKL698 (P.B.); LLR08004 (A.D.W., A.P. and A.J.W.); MRC CiC (M.E.D.); The Howat Foundation (FACS
support); Friends of Paul O’Gorman (K.D. and FACS support); ELF 67954 (S.A.A.); BSH start up fund (S.A.A.);
MR/K014854/1 (K.D.)
A Multilaboratory Comparison of Calibration Accuracy and the Performance of External References in Analytical Ultracentrifugation
Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies
Transcriptomic analysis of cutaneous squamous cell carcinoma reveals a multi-gene prognostic signature associated with metastasis
Background: Metastasis of cutaneous squamous cell carcinoma (cSCC) is uncommon. Current staging methods are reported to have sub-optimal performances in metastasis prediction. Accurate identification of patients with tumours at high risk of metastasis would have a significant impact on management.Objective: To develop a robust and validated gene expression profile (GEP) signature for predicting primary cSCC metastatic risk using an unbiased whole transcriptome discovery-driven approach.Methods: Archival formalin-fixed paraffin-embedded primary cSCC with perilesional normal tissue from 237 immunocompetent patients (151 non-metastasising and 86 metastasising) were collected retrospectively from four centres. TempO-seq was used to probe the whole transcriptome and machine learning algorithms were applied to derive predictive signatures, with a 3:1 split for training and testing datasets.Results: A 20-gene prognostic model was developed and validated, with an accuracy of 86.0%, sensitivity of 85.7%, specificity of 86.1%, and positive predictive value of 78.3% in the testing set, providing more stable, accurate prediction than pathological staging systems. A linear predictor was also developed, significantly correlating with metastatic risk.Limitations: This was a retrospective 4-centre study and larger prospective multicentre studies are now required.Conclusion: The 20-gene signature prediction is accurate, with the potential to be incorporated into clinical workflows for cSCC
Transcriptomic analysis of cutaneous squamous cell carcinoma reveals a multi-gene prognostic signature associated with metastasis
Background: Metastasis of cutaneous squamous cell carcinoma (cSCC) is uncommon. Current staging methods are reported to have sub-optimal performances in metastasis prediction. Accurate identification of patients with tumours at high risk of metastasis would have a significant impact on management.Objective: To develop a robust and validated gene expression profile (GEP) signature for predicting primary cSCC metastatic risk using an unbiased whole transcriptome discovery-driven approach.Methods: Archival formalin-fixed paraffin-embedded primary cSCC with perilesional normal tissue from 237 immunocompetent patients (151 non-metastasising and 86 metastasising) were collected retrospectively from four centres. TempO-seq was used to probe the whole transcriptome and machine learning algorithms were applied to derive predictive signatures, with a 3:1 split for training and testing datasets.Results: A 20-gene prognostic model was developed and validated, with an accuracy of 86.0%, sensitivity of 85.7%, specificity of 86.1%, and positive predictive value of 78.3% in the testing set, providing more stable, accurate prediction than pathological staging systems. A linear predictor was also developed, significantly correlating with metastatic risk.Limitations: This was a retrospective 4-centre study and larger prospective multicentre studies are now required.Conclusion: The 20-gene signature prediction is accurate, with the potential to be incorporated into clinical workflows for cSCC
Transcriptomic analysis of cutaneous squamous cell carcinoma reveals a multi-gene prognostic signature associated with metastasis.
BackgroundMetastasis of cutaneous squamous cell carcinoma (cSCC) is uncommon. Current staging methods are reported to have sub-optimal performances in metastasis prediction. Accurate identification of patients with tumours at high risk of metastasis would have a significant impact on management.ObjectiveTo develop a robust and validated gene expression profile (GEP) signature for predicting primary cSCC metastatic risk using an unbiased whole transcriptome discovery-driven approach.MethodsArchival formalin-fixed paraffin-embedded primary cSCC with perilesional normal tissue from 237 immunocompetent patients (151 non-metastasising and 86 metastasising) were collected retrospectively from four centres. TempO-seq was used to probe the whole transcriptome and machine learning algorithms were applied to derive predictive signatures, with a 3:1 split for training and testing datasets.ResultsA 20-gene prognostic model was developed and validated, with an accuracy of 86.0%, sensitivity of 85.7%, specificity of 86.1%, and positive predictive value of 78.3% in the testing set, providing more stable, accurate prediction than pathological staging systems. A linear predictor was also developed, significantly correlating with metastatic risk.LimitationsThis was a retrospective 4-centre study and larger prospective multicentre studies are now required.ConclusionThe 20-gene signature prediction is accurate, with the potential to be incorporated into clinical workflows for cSCC
A multilaboratory comparison of calibration accuracy and the performance of external references in analytical ultracentrifugation.
Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies
Transcriptomic analysis of cutaneous squamous cell carcinoma reveals a multi-gene prognostic signature associated with metastasis.
BACKGROUND: Metastasis of cutaneous squamous cell carcinoma (cSCC) is uncommon. Current staging methods are reported to have sub-optimal performances in metastasis prediction. Accurate identification of patients with tumours at high risk of metastasis would have a significant impact on management. OBJECTIVE: To develop a robust and validated gene expression profile (GEP) signature for predicting primary cSCC metastatic risk using an unbiased whole transcriptome discovery-driven approach. METHODS: Archival formalin-fixed paraffin-embedded primary cSCC with perilesional normal tissue from 237 immunocompetent patients (151 non-metastasising and 86 metastasising) were collected retrospectively from four centres. TempO-seq was used to probe the whole transcriptome and machine learning algorithms were applied to derive predictive signatures, with a 3:1 split for training and testing datasets. RESULTS: A 20-gene prognostic model was developed and validated, with an accuracy of 86.0%, sensitivity of 85.7%, specificity of 86.1%, and positive predictive value of 78.3% in the testing set, providing more stable, accurate prediction than pathological staging systems. A linear predictor was also developed, significantly correlating with metastatic risk. LIMITATIONS: This was a retrospective 4-centre study and larger prospective multicentre studies are now required. CONCLUSION: The 20-gene signature prediction is accurate, with the potential to be incorporated into clinical workflows for cSCC
Efferocytosis reprograms the tumor microenvironment to promote pancreatic cancer liver metastasis.
Pancreatic ductal adenocarcinoma is a highly metastatic disease and macrophages support liver metastases. Efferocytosis, or engulfment of apoptotic cells by macrophages, is an essential process in tissue homeostasis and wound healing, but its role in metastasis is less well understood. Here, we found that the colonization of the hepatic metastatic site is accompanied by low-grade tissue injury and that efferocytosis-mediated clearance of parenchymal dead cells promotes macrophage reprogramming and liver metastasis. Mechanistically, progranulin expression in macrophages is necessary for efficient efferocytosis by controlling lysosomal acidification via cystic fibrosis transmembrane conductance regulator and the degradation of lysosomal cargo, resulting in LXRα/RXRα-mediated macrophage conversion and upregulation of arginase 1. Pharmacological blockade of efferocytosis or macrophage-specific genetic depletion of progranulin impairs macrophage conversion, improves CD8+ T cell functions, and reduces liver metastasis. Our findings reveal how hard-wired functions of macrophages in tissue repair contribute to liver metastasis and identify potential targets for prevention of pancreatic ductal adenocarcinoma liver metastasis
HNF4A and GATA6 loss reveals therapeutically actionable subtypes in pancreatic cancer
Pancreatic ductal adenocarcinoma (PDAC) can be divided into transcriptomic subtypes with two broad lineages referred to as classical (pancreatic) and squamous. We find that these two subtypes are driven by distinct metabolic phenotypes. Loss of genes that drive endodermal lineage specification, HNF4A and GATA6, switch metabolic profiles from classical (pancreatic) to predominantly squamous, with glycogen synthase kinase 3 beta (GSK3β) a key regulator of glycolysis. Pharmacological inhibition of GSK3β results in selective sensitivity in the squamous subtype; however, a subset of these squamous patient-derived cell lines (PDCLs) acquires rapid drug tolerance. Using chromatin accessibility maps, we demonstrate that the squamous subtype can be further classified using chromatin accessibility to predict responsiveness and tolerance to GSK3β inhibitors. Our findings demonstrate that distinct patterns of chromatin accessibility can be used to identify patient subgroups that are indistinguishable by gene expression profiles, highlighting the utility of chromatin-based biomarkers for patient selection in the treatment of PDAC
- …
