1,884 research outputs found

    On the Determination of Star Formation Rates in Evolving Galaxy Populations

    Get PDF
    The redshift dependence of the luminosity density in certain wavebands (e.g. UV and H-alpha) can be used to infer the history of star formation in the populations of galaxies producing this luminosity. This history is a useful datum in studies of galaxy evolution. It is therefore important to understand the errors that attend the inference of star formation rate densities from luminosity densities. This paper explores the self-consistency of star formation rate diagnostics by reproducing commonly used observational procedures in a model with known galaxy populations, evolutionary histories and spectral emission properties. The study reveals a number of potential sources of error in the diagnostic processes arising from the differential evolution of different galaxy types. We argue that multi-wavelength observations can help to reduce these errors.Comment: 13 pages (including 5 encapsulated postscript figures), aastex, accepted for publication in Ap

    The Global Star Formation Rate from the 1.4 GHz Luminosity Function

    Get PDF
    The decimetric luminosity of many galaxies appears to be dominated by synchrotron emission excited by supernova explosions. Simple models suggest that the luminosity is directly proportional to the rate of supernova explosions of massive stars averaged over the past 30 Myr. The proportionality may be used together with models of the evolving 1.4 GHz luminosity function to estimate the global star formation rate density in the era z < 1. The local value is estimated to be 0.026 solar masses per year per cubic megaparsec, some 50% larger than the value inferred from the Halpha luminosity density. The value at z ~ 1 is found to be 0.30 solar masses per year per cubic megaparsec. The 10-fold increase in star formation rate density is consistent with the increase inferred from mm-wave, far-infrared, ultra-violet and Halpha observations.Comment: 10 pages, 2 figures, Astrophysical Journal Letters (in press); new PS version has improved figure placemen

    High Velocity Cloud Complex H: A Satellite of the Milky Way in a Retrograde Orbit?

    Full text link
    Observations with the Green Bank Telescope of 21cm HI emission from the high-velocity cloud Complex H suggest that it is interacting with the Milky Way. A model in which the cloud is a satellite of the Galaxy in an inclined, retrograde circular orbit reproduces both the cloud's average velocity and its velocity gradient with latitude. The model places Complex H at approximately 33 kpc from the Galactic Center on a retrograde orbit inclined about 45 degrees to the Galactic plane. At this location it has an HI mass > 6 10^6 Msun and dimensions of at least 10 by 5 kpc. Some of the diffuse HI associated with the cloud has apparently been decelerated by interaction with Galactic gas. Complex H has similarities to the dwarf irregular galaxy Leo A and to some compact high-velocity clouds, and has an internal structure nearly identical to parts of the Magellanic Stream, with a pressure P/k about 100 cm^{-3} K.Comment: 12 pages includes 4 figures. To be published in Astrophysical Journal Letters, 1 July 200

    Taxonomy Induction using Hypernym Subsequences

    Get PDF
    We propose a novel, semi-supervised approach towards domain taxonomy induction from an input vocabulary of seed terms. Unlike all previous approaches, which typically extract direct hypernym edges for terms, our approach utilizes a novel probabilistic framework to extract hypernym subsequences. Taxonomy induction from extracted subsequences is cast as an instance of the minimumcost flow problem on a carefully designed directed graph. Through experiments, we demonstrate that our approach outperforms stateof- the-art taxonomy induction approaches across four languages. Importantly, we also show that our approach is robust to the presence of noise in the input vocabulary. To the best of our knowledge, no previous approaches have been empirically proven to manifest noise-robustness in the input vocabulary

    Deep Photometry in a Remote M31 Major Axis Field Near G1

    Full text link
    We present photometry from Hubble Space Telescope (HST)/Wide Field Planetary Camera 2 parallel imagery of a remote M31 field at a projected distance of about 34 kpc from the nucleus near the SW major axis. This field is near the globular cluster G1, and near one of the candidate tidal plumes identified by Ferguson et al. (2002). The F606W (V) and F814W (I) images were obtained in parallel with Space Telescope Imaging Spectrograph spectroscopy of G1 (GO-9099) and total 7.11 hours of integration time -- the deepest HST field in the outer disk of M31 to date, reaching to V ~ 28. The color-magnitude diagram of the field shows a clearly-defined red clump at V = 25.25 and a red giant branch consistent with [Fe/H] ~ -0.7. The lack of a blue horizontal branch contrasts with other M31 halo fields, the Andromeda dwarf spheroidals, and with the nearby globular cluster G1. Comparing the observed luminosity function to the Padova models, we find that at least some of the stellar population must be younger than 6 - 8 Gyr. The outermost detected neutral hydrogen gas disk of M31 lies only 2 kpc in projection from our field. The finding that some giants in the field have radial velocities close to that of the neutral hydrogen gas (Reitzel, Guhathakurta, & Rich 2003) leads us to conclude that our field samples the old, low-surface-brightness disk rather than the true Population II spheroid.Comment: 15 pages, 3 figures. accepted for publication in the A

    The Phoenix Deep Survey: The 1.4 GHz microJansky catalogue

    Full text link
    The initial Phoenix Deep Survey (PDS) observations with the Australia Telescope Compact Array have been supplemented by additional 1.4 GHz observations over the past few years. Here we present details of the construction of a new mosaic image covering an area of 4.56 square degrees, an investigation of the reliability of the source measurements, and the 1.4 GHz source counts for the compiled radio catalogue. The mosaic achieves a 1-sigma rms noise of 12 microJy at its most sensitive, and a homogeneous radio-selected catalogue of over 2000 sources reaching flux densities as faint as 60 microJy has been compiled. The source parameter measurements are found to be consistent with the expected uncertainties from the image noise levels and the Gaussian source fitting procedure. A radio-selected sample avoids the complications of obscuration associated with optically-selected samples, and by utilising complementary PDS observations including multicolour optical, near-infrared and spectroscopic data, this radio catalogue will be used in a detailed investigation of the evolution in star-formation spanning the redshift range 0 < z < 1. The homogeneity of the catalogue ensures a consistent picture of galaxy evolution can be developed over the full cosmologically significant redshift range of interest. The 1.4 GHz mosaic image and the source catalogue are available on the web at http://www.atnf.csiro.au/~ahopkins/phoenix/ or from the authors by request.Comment: 16 pages, 11 figures, 4 tables. Accepted for publication by A

    VLA Observations of the "Eye of the Tornado"- the High Velocity \HII Region G357.63-0.06

    Get PDF
    The unusual supernova remnant candidate G357.7-0.1 and the compact source G357.63-0.06 have been observed with the Very Large Array at 1.4 and 8.3 GHz. The H92α\alpha line (8.3 GHz) was detected from the compact source with a surprising velocity of about -210 km/s indicating that this source is an \HII region, is most likely located at the Galactic center, and is unrelated to the SNR. The \HI absorption line (1.4 GHz) data toward these sources supports this picture and suggests that G357.7-0.1 lies farther away than the Galactic center.Comment: Latex, 14 pages including 4 figures. Accepted to A

    Unveiling extremely veiled T Tauri stars

    Get PDF
    Photospheric absorption lines in classical T Tauri stars (CTTS) are weak compared to normal stars. This so-called veiling is normally identified with an excess continuous emission formed in shock-heated gas at the stellar surface below the accretion streams. We have selected four stars (RW Aur A, RU Lup, S CrA NW and S CrA SE) with unusually strong veiling to make a detailed investigation of veiling versus stellar brightness and emission line strengths for comparisons to standard accretion models. We have monitored the stars photometrically and spectroscopically at several epochs. In standard accretion models a variable accretion rate will lead to a variable excess emission. Consequently, the stellar brightness should vary accordingly. We find that the veiling of absorption lines in these stars is strongly variable and usually so large that it would require the release of several stellar luminosities of potential energy. At states of very large line dilution, the correspondingly large veiling factors derived correlate only weakly with brightness. Moreover, the emission line strengths violate the expected trend of veiling versus line strength. The veiling can change dramatically in one night, and is not correlated with the phase of the rotation periods found for two stars. We show that in at least three of the stars, when the veiling becomes high, the photospheric lines become filled-in by line emission, which produces large veiling factors unrelated to changes in any continuous emission from shocked regions. We also consider to what extent extinction by dust and electron scattering in the accretion stream may affect veiling measures in CTTS. We conclude that the degree of veiling cannot be used as a measure of accretion rates in CTTS with rich emission line spectra.Comment: Accepted for publication in A&A Letters. New language-edited version. (4 pages, 3 figures

    The Tully-Fisher Relation and H_not

    Full text link
    The use of the Tully-Fisher (TF) relation for the determination of the Hubble Constant relies on the availability of an adequate template TF relation and of reliable primary distances. Here we use a TF template relation with the best available kinematical zero-point, obtained from a sample of 24 clusters of galaxies extending to cz ~ 9,000 km/s, and the most recent set of Cepheid distances for galaxies fit for TF use. The combination of these two ingredients yields H_not = 69+/-5 km/(s Mpc). The approach is significantly more accurate than the more common application with single cluster (e.g. Virgo, Coma) samples.Comment: 10 pages, including 2 figures and 1 table; uses AAS LaTex. Submitted to ApJ Letter
    corecore