1,221 research outputs found
Scaling and Universality in City Space Syntax: between Zipf and Matthew
We report about universality of rank-integration distributions of open spaces
in city space syntax similar to the famous rank-size distributions of cities
(Zipf's law). We also demonstrate that the degree of choice an open space
represents for other spaces directly linked to it in a city follows a power law
statistic. Universal statistical behavior of space syntax measures uncovers the
universality of the city creation mechanism. We suggest that the observed
universality may help to establish the international definition of a city as a
specific land use pattern.Comment: 24 pages, 5 *.eps figure
PILOT: a balloon-borne experiment to measure the polarized FIR emission of dust grains in the interstellar medium
Future cosmology space missions will concentrate on measuring the
polarization of the Cosmic Microwave Background, which potentially carries
invaluable information about the earliest phases of the evolution of our
universe. Such ambitious projects will ultimately be limited by the sensitivity
of the instrument and by the accuracy at which polarized foreground emission
from our own Galaxy can be subtracted out. We present the PILOT balloon project
which will aim at characterizing one of these foreground sources, the
polarization of the dust continuum emission in the diffuse interstellar medium.
The PILOT experiment will also constitute a test-bed for using multiplexed
bolometer arrays for polarization measurements. We present the results of
ground tests obtained just before the first flight of the instrument.Comment: 17 pages, 13 figures. Presented at SPIE, Millimeter, Submillimeter,
and Far-Infrared Detectors and Instrumentation for Astronomy VII. To be
published in Proc. SPIE volume 915
Classical novae from the POINT-AGAPE microlensing survey of M31 -- I. The nova catalogue
The POINT-AGAPE survey is an optical search for gravitational microlensing
events towards the Andromeda Galaxy (M31). As well as microlensing, the survey
is sensitive to many different classes of variable stars and transients. Here
we describe the automated detection and selection pipeline used to identify M31
classical novae (CNe) and we present the resulting catalogue of 20 CN
candidates observed over three seasons. CNe are observed both in the bulge
region as well as over a wide area of the M31 disk. Nine of the CNe are caught
during the final rise phase and all are well sampled in at least two colours.
The excellent light-curve coverage has allowed us to detect and classify CNe
over a wide range of speed class, from very fast to very slow. Among the
light-curves is a moderately fast CN exhibiting entry into a deep transition
minimum, followed by its final decline. We have also observed in detail a very
slow CN which faded by only 0.01 mag day over a 150 day period. We
detect other interesting variable objects, including one of the longest period
and most luminous Mira variables. The CN catalogue constitutes a uniquely
well-sampled and objectively-selected data set with which to study the
statistical properties of classical novae in M31, such as the global nova rate,
the reliability of novae as standard-candle distance indicators and the
dependence of the nova population on stellar environment. The findings of this
statistical study will be reported in a follow-up paper.Comment: 21 pages, 13 figures, re-submitted for publication in MNRAS, typos
corrected, references updated, figures 5-9 made cleare
Cosmological Deformation of Lorentzian Spin Foam Models
We study the quantum deformation of the Barrett-Crane Lorentzian spin foam
model which is conjectured to be the discretization of Lorentzian Plebanski
model with positive cosmological constant and includes therefore as a
particular sector quantum gravity in de-Sitter space. This spin foam model is
constructed using harmonic analysis on the quantum Lorentz group. The
evaluation of simple spin networks are shown to be non commutative integrals
over the quantum hyperboloid defined as a pile of fuzzy spheres. We show that
the introduction of the cosmological constant removes all the infrared
divergences: for any fixed triangulation, the integration over the area
variables is finite for a large class of normalization of the amplitude of the
edges and of the faces.Comment: 37 pages, 7 figures include
Spacetime states and covariant quantum theory
In it's usual presentation, classical mechanics appears to give time a very
special role. But it is well known that mechanics can be formulated so as to
treat the time variable on the same footing as the other variables in the
extended configuration space. Such covariant formulations are natural for
relativistic gravitational systems, where general covariance conflicts with the
notion of a preferred physical-time variable. The standard presentation of
quantum mechanics, in turns, gives again time a very special role, raising well
known difficulties for quantum gravity. Is there a covariant form of
(canonical) quantum mechanics? We observe that the preferred role of time in
quantum theory is the consequence of an idealization: that measurements are
instantaneous. Canonical quantum theory can be given a covariant form by
dropping this idealization. States prepared by non-instantaneous measurements
are described by "spacetime smeared states". The theory can be formulated in
terms of these states, without making any reference to a special time variable.
The quantum dynamics is expressed in terms of the propagator, an object
covariantly defined on the extended configuration space.Comment: 20 pages, no figures. Revision: minor corrections and references
adde
The emergence of international food safety standards and guidelines: understanding the current landscape through a historical approach
Following the Second World War, the Food and Agriculture Organization (FAO) and the World Health Organization (WHO) teamed up to construct an International Codex Alimentarius (or 'food code') which emerged in 1963. The Codex Committee on Food Hygiene (CCFH) was charged with the task of developing microbial hygiene standards, although it found itself embroiled in debate with the WHO over the nature these standards should take. The WHO was increasingly relying upon the input of biometricians and especially the International Commission on Microbial Specifications for Foods (ICMSF) which had developed statistical sampling plans for determining the microbial counts in the final end products. The CCFH, however, was initially more focused on a qualitative approach which looked at the entire food production system and developed codes of practice as well as more descriptive end-product specifications which the WHO argued were 'not scientifically correct'. Drawing upon historical archival material (correspondence and reports) from the WHO and FAO, this article examines this debate over microbial hygiene standards and suggests that there are many lessons from history which could shed light upon current debates and efforts in international food safety management systems and approaches
Supermassive Black Holes in Galactic Nuclei: Past, Present and Future Research
This review discusses the current status of supermassive black hole research,
as seen from a purely observational standpoint. Since the early '90s, rapid
technological advances, most notably the launch of the Hubble Space Telescope,
the commissioning of the VLBA and improvements in near-infrared speckle imaging
techniques, have not only given us incontrovertible proof of the existence of
supermassive black holes, but have unveiled fundamental connections between the
mass of the central singularity and the global properties of the host galaxy.
It is thanks to these observations that we are now, for the first time, in a
position to understand the origin, evolution and cosmic relevance of these
fascinating objects.Comment: Invited Review, 114 pages. Because of space requirements, this
version contains low resolution figures. The full resolution version can be
downloaded from http://www.physics.rutgers.edu/~lff/publications.htm
Paisia, an Early Cretaceous eudicot angiosperm flower with pantoporate pollen from Portugal
A new fossil angiosperm, Paisia pantoporata, is described from the Early Cretaceous Catefica mesofossil flora, Portugal, based on coalified floral buds, flowers and isolated floral structures. The flowers are actinomorphic and structurally bisexual with a single whorl of five fleshy tepals, a single whorl of five stamens and a single whorl of five carpels. Tepals, stamens and carpels are opposite, arranged on the same radii and tepals are involute at the base clasping the stamens. Stamens have a massive filament that grades without a joint into the anther. The anthers are dithecate and tetrasporangiate with extensive connective tissue between the tiny pollen sacs. Pollen grains are pantoporate and spiny. The carpels are free, apparently plicate, with many ovules borne in two rows along the ventral margins. Paisia pantoporata is the oldest known flower with pantoporate pollen. Similar pantoporate pollen was also recognised in the associated dispersed palynoflora. Paisia is interpreted as a possibly insect pollinated, herbaceous plant with low pollen production and low dispersal potential of the pollen. The systematic position of Paisia is uncertain and Paisia pantoporata most likely belongs to an extinct lineage. Pantoporate pollen occurs scattered among all major groups of angiosperms and a close match to the fossils has not been identified. The pentamerous floral organisation together with structure of stamen, pollen and carpel suggests a phylogenetic position close to the early diverging eudicot lineages, probably in the Ranunculales.Swiss Light Source at the Paul Scherrer Institute (European Union FP6 projects) [20130185, 20141047]; Swedish Research Council [2014-5228]; Portuguese Science Foundation (FCT) [UID/MAR/00350/2013]; CretaCarbo project [PTDC/CTE-GIX/113983/2009
Measurement of the cross-section and charge asymmetry of bosons produced in proton-proton collisions at TeV with the ATLAS detector
This paper presents measurements of the and cross-sections and the associated charge asymmetry as a
function of the absolute pseudorapidity of the decay muon. The data were
collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with
the ATLAS experiment at the LHC and correspond to a total integrated luminosity
of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements
varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the
1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured
with an uncertainty between 0.002 and 0.003. The results are compared with
predictions based on next-to-next-to-leading-order calculations with various
parton distribution functions and have the sensitivity to discriminate between
them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables,
submitted to EPJC. All figures including auxiliary figures are available at
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13
- …
