11 research outputs found

    Positive effects of robotic exoskeleton training of upper limb reaching movements after stroke

    Get PDF
    This study, conducted in a group of nine chronic patients with right-side hemiparesis after stroke, investigated the effects of a robotic-assisted rehabilitation training with an upper limb robotic exoskeleton for the restoration of motor function in spatial reaching movements. The robotic assisted rehabilitation training was administered for a period of 6 weeks including reaching and spatial antigravity movements. To assess the carry-over of the observed improvements in movement during training into improved function, a kinesiologic assessment of the effects of the training was performed by means of motion and dynamic electromyographic analysis of reaching movements performed before and after training. The same kinesiologic measurements were performed in a healthy control group of seven volunteers, to determine a benchmark for the experimental observations in the patients’ group. Moreover degree of functional impairment at the enrolment and discharge was measured by clinical evaluation with upper limb Fugl-Meyer Assessment scale (FMA, 0–66 points), Modified Ashworth scale (MA, 0–60 pts) and active ranges of motion. The robot aided training induced, independently by time of stroke, statistical significant improvements of kinesiologic (movement time, smoothness of motion) and clinical (4.6 ± 4.2 increase in FMA, 3.2 ± 2.1 decrease in MA) parameters, as a result of the increased active ranges of motion and improved cocontraction index for shoulder extension/flexion. Kinesiologic parameters correlated significantly with clinical assessment values, and their changes after the training were affected by the direction of motion (inward vs. outward movement) and position of target to be reached (ipsilateral, central and contralateral peripersonal space). These changes can be explained as a result of the motor recovery induced by the robotic training, in terms of regained ability to execute single joint movements and of improved interjoint coordination of elbow and shoulder joints

    Post-traumatic hand rehabilitation using a powered metacarpal-phalangeal exoskeleton: a pilot study

    Get PDF
    Background: In the context of post-traumatic hand rehabilitation, stiffness of the hand joints limits the range of motion (ROM), grip strength, and the possibility of performing simple grasps. Robotic rehabilitation has been widely adopted for hand treatment with neurological patients, but its application in the orthopaedic scenario remains limited. In this paper, a pilot study targeting this population is presented, where the rehabilitation is performed using a powered finger exoskeleton, namely I-Phlex. The device aims to mobilize the metacarpal-phalangeal joint (MCP) in flexion-extension movements. The objective of the study was to verify the short-term efficacy, experience of use, and safety of I-Phlex in a clinical setting. As a secondary objective, the study verified the device's capability to measure clinically relevant variables. Methods: Six subjects with trauma-related illnesses of the right hand took part in the experiment. Passive and active range of motion (PROM and AROM) were recorded at the beginning and the end of the session by the therapist and by the exoskeleton. Experience of use was assessed through ad-hoc questionnaires and a numerical pain rate scale (NPRS). Safety was assessed by computing the number of adverse events during the operation. Results: Median increases in the PROM and AROM of 5.88% and 11.11% respectively were recorded among subjects. The questionnaires reported a median score of 93.83; IQR (85.01-100) and 80.00; IQR (79.79-93.75) respectively. No increase in the median NPRS was recorded among subjects between pre-and post-treatment. No major adverse event or injury to the patients was recorded. Only one malfunction was reported due to the brake of a transmission cable, but the patient reported no injury or discomfort. No statistical significance was observed between the ROM measurement recorded using the exoskeleton and the ones taken by the therapist using the goniometer. Conclusions: The device and related rehabilitation exercises can be successfully used in the clinical rehabilitation of the MCP joint. The device measurements are in line with the goniometer assessment from the therapist. Future studies will aim to reinforce the results obtained, introducing a control group to conclude on the specific contribution of the technology compared to conventional therapy. Trial registration: Hand Motor Rehabilitation Using a Wearable Robotic Device (WRL HX MCP), Clinicaltrials.gov ID NCT05155670, Registration date 13 December 2021, URL https://clinicaltrials.gov/ct2/show/NCT05155670

    Robotic training can improve coordination and muscular activation in chronic hemiplegic stroke

    No full text
    Vengono studiate le modificazioni cinematiche del movimento volontario indotto da training robotico in un campione di pazienti emiplegic

    Identification of movement phenotypes from occupational gesture kinematics: Advancing individual ergonomic exposure classification and personalized training

    No full text
    The identification of personalized preventive strategies plays a major role in contrasting the occurrence of work-related musculoskeletal disorders. This requires the identification of distinct movement patterns within large samples and the attribution of a proper risk level to each identified movement phenotype. We assessed the feasibility of this approach by exploiting wearable inertial measurement units to estimate the whole-body kinematics of 43 healthy participants performing 18 reach-to-manipulate movements, which differed based on the object's position in the space and the type of manipulation required. Through unsupervised clustering, we identified multiple movement phenotypes graded by ergonomic performance. Furthermore, we determined which joints mostly contributed to instantiating the ergonomic differences across clusters, emphasizing the importance of monitoring this aspect during occupational gestures. Overall, our analysis suggests that movement phenotypes can be identified within occupational motor repertoires. Assigning individual performance to specific phenotypes has the potential to inform the development of more effective and tailored interventions

    Competition and Regulation in Italy

    No full text
    corecore