23,018 research outputs found

    Marea: a Byzantine port in northern Egypt

    Full text link
    African Studies Center Working Paper No. 6

    An environmental and cultural study at Lake Maryut, Lower Egypt: a research prospectus

    Full text link
    African Studies Center Working Paper No. 2

    The combinatorial structure of beta negative binomial processes

    Full text link
    We characterize the combinatorial structure of conditionally-i.i.d. sequences of negative binomial processes with a common beta process base measure. In Bayesian nonparametric applications, such processes have served as models for latent multisets of features underlying data. Analogously, random subsets arise from conditionally-i.i.d. sequences of Bernoulli processes with a common beta process base measure, in which case the combinatorial structure is described by the Indian buffet process. Our results give a count analogue of the Indian buffet process, which we call a negative binomial Indian buffet process. As an intermediate step toward this goal, we provide a construction for the beta negative binomial process that avoids a representation of the underlying beta process base measure. We describe the key Markov kernels needed to use a NB-IBP representation in a Markov Chain Monte Carlo algorithm targeting a posterior distribution.Comment: Published at http://dx.doi.org/10.3150/15-BEJ729 in the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Decentralized mobility models for data collection in wireless sensor networks

    Full text link
    Controlled mobility in wireless sensor networks provides many benefits towards enhancing the network performance and prolonging its lifetime. Mobile elements, acting as mechanical data carriers, traverse the network collecting data using single-hop communication, instead of the more energy demanding multi-hop routing to the sink. Scaling up from single to multiple mobiles is based more on the mobility models and the coordination methodology rather than increasing the number of mobile elements in the network. This work addresses the problem of designing and coordinating decentralized mobile elements for scheduling data collection in wireless sensor networks, while preserving some performance measures, such as latency and amount of data collected. We propose two mobility models governing the behaviour of the mobile element, where the incoming data collection requests are scheduled to service according to bidding strategies to determine the winner element. Simulations are run to measure the performance of the proposed mobility models subject to the network size and the number of mobile elements.<br /

    Exact Algorithm for Sampling the 2D Ising Spin Glass

    Get PDF
    A sampling algorithm is presented that generates spin glass configurations of the 2D Edwards-Anderson Ising spin glass at finite temperature, with probabilities proportional to their Boltzmann weights. Such an algorithm overcomes the slow dynamics of direct simulation and can be used to study long-range correlation functions and coarse-grained dynamics. The algorithm uses a correspondence between spin configurations on a regular lattice and dimer (edge) coverings of a related graph: Wilson's algorithm [D. B. Wilson, Proc. 8th Symp. Discrete Algorithms 258, (1997)] for sampling dimer coverings on a planar lattice is adapted to generate samplings for the dimer problem corresponding to both planar and toroidal spin glass samples. This algorithm is recursive: it computes probabilities for spins along a "separator" that divides the sample in half. Given the spins on the separator, sample configurations for the two separated halves are generated by further division and assignment. The algorithm is simplified by using Pfaffian elimination, rather than Gaussian elimination, for sampling dimer configurations. For n spins and given floating point precision, the algorithm has an asymptotic run-time of O(n^{3/2}); it is found that the required precision scales as inverse temperature and grows only slowly with system size. Sample applications and benchmarking results are presented for samples of size up to n=128^2, with fixed and periodic boundary conditions.Comment: 18 pages, 10 figures, 1 table; minor clarification
    • …
    corecore