3,345 research outputs found

    Conserved masses in GHS Einstein and string black holes

    Full text link
    We analyze the relationship between quasilocal masses calculated for solutions of conformally related theories. We show that the ADM mass of a static, spherically symmetric solution is conformally invariant (up to a constant factor) only if the background action functional is conformally invariant. Thus, the requirement of conformal invariance places restrictions on the choice of reference spacetimes. We calculate the mass of the black hole solutions obtained by Garfinkle, Horowitz, and Strominger (GHS) for both the string and the Einstein metrics. In addition, the quasilocal thermodynamic quantities in the string metrics are computed and discussed.Comment: 16 pages REVTeX with packages amsfonts and amssym

    Duality of Quasilocal Black Hole Thermodynamics

    Get PDF
    We consider T-duality of the quasilocal black hole thermodynamics for the three-dimensional low energy effective string theory. Quasilocal thermodynamic variables in the first law are explicitly calculated on a general axisymmetric three-dimensional black hole solution and corresponding dual one. Physical meaning of the dual invariance of the black hole entropy is considered in terms of the Euclidean path integral formulation.Comment: 19 pages, Latex, no figures, to be published in Class. Quantum Grav. Some minor changes, references adde

    An excess power statistic for detection of burst sources of gravitational radiation

    Get PDF
    We examine the properties of an excess power method to detect gravitational waves in interferometric detector data. This method is designed to detect short-duration (< 0.5 s) burst signals of unknown waveform, such as those from supernovae or black hole mergers. If only the bursts' duration and frequency band are known, the method is an optimal detection strategy in both Bayesian and frequentist senses. It consists of summing the data power over the known time interval and frequency band of the burst. If the detector noise is stationary and Gaussian, this sum is distributed as a chi-squared (non-central chi-squared) deviate in the absence (presence) of a signal. One can use these distributions to compute frequentist detection thresholds for the measured power. We derive the method from Bayesian analyses and show how to compute Bayesian thresholds. More generically, when only upper and/or lower bounds on the bursts duration and frequency band are known, one must search for excess power in all concordant durations and bands. Two search schemes are presented and their computational efficiencies are compared. We find that given reasonable constraints on the effective duration and bandwidth of signals, the excess power search can be performed on a single workstation. Furthermore, the method can be almost as efficient as matched filtering when a large template bank is required. Finally, we derive generalizations of the method to a network of several interferometers under the assumption of Gaussian noise.Comment: 22 pages, 6 figure

    Response of the Brazilian gravitational wave detector to signals from a black hole ringdown

    Full text link
    It is assumed that a black hole can be disturbed in such a way that a ringdown gravitational wave would be generated. This ringdown waveform is well understood and is modelled as an exponentially damped sinusoid. In this work we use this kind of waveform to study the performance of the SCHENBERG gravitational wave detector. This first realistic simulation will help us to develop strategies for the signal analysis of this Brazilian detector. We calculated the signal-to-noise ratio as a function of frequency for the simulated signals and obtained results that show that SCHENBERG is expected to be sensitive enough to detect this kind of signal up to a distance of 20kpc\sim 20\mathrm{kpc}.Comment: 5 pages, 4 figures, Amaldi 5 Conference Proceedings contribution. Submitted to Class. Quantum Gra

    Moduli, Scalar Charges, and the First Law of Black Hole Thermodynamics

    Get PDF
    We show that under variation of moduli fields ϕ\phi the first law of black hole thermodynamics becomes dM=κdA8π+ΩdJ+ψdq+χdpΣdϕdM = {\kappa dA\over 8\pi} + \Omega dJ + \psi dq + \chi dp - \Sigma d\phi, where Σ\Sigma are the scalar charges. We also show that the ADM mass is extremized at fixed AA, JJ, (p,q)(p,q) when the moduli fields take the fixed value ϕfix(p,q)\phi_{\rm fix}(p,q) which depend only on electric and magnetic charges. It follows that the least mass of any black hole with fixed conserved electric and magnetic charges is given by the mass of the double-extreme black hole with these charges. Our work allows us to interpret the previously established result that for all extreme black holes the moduli fields at the horizon take a value ϕ=ϕfix(p,q)\phi= \phi_{\rm fix}(p,q) depending only on the electric and magnetic conserved charges: ϕfix(p,q) \phi_{\rm fix}(p,q) is such that the scalar charges Σ(ϕfix,(p,q))=0\Sigma ( \phi_{\rm fix}, (p,q))=0.Comment: 3 pages, no figures, more detailed versio

    Finite size effects on thermal denaturation of globular proteins

    Full text link
    Finite size effects on the cooperative thermal denaturation of proteins are considered. A dimensionless measure of cooperativity, Omega, scales as N^zeta, where N is the number of amino acids. Surprisingly, we find that zeta is universal with zeta = 1 + gamma, where the exponent gamma characterizes the divergence of the susceptibility for a self-avoiding walk. Our lattice model simulations and experimental data are consistent with the theory. Our finding rationalizes the marginal stability of proteins and substantiates the earlier predictions that the efficient folding of two-state proteins requires the folding transition temperature to be close to the collapse temperature.Comment: 3 figures. Physical Review Letters (in press
    corecore