3,345 research outputs found
Conserved masses in GHS Einstein and string black holes
We analyze the relationship between quasilocal masses calculated for
solutions of conformally related theories. We show that the ADM mass of a
static, spherically symmetric solution is conformally invariant (up to a
constant factor) only if the background action functional is conformally
invariant. Thus, the requirement of conformal invariance places restrictions on
the choice of reference spacetimes. We calculate the mass of the black hole
solutions obtained by Garfinkle, Horowitz, and Strominger (GHS) for both the
string and the Einstein metrics. In addition, the quasilocal thermodynamic
quantities in the string metrics are computed and discussed.Comment: 16 pages REVTeX with packages amsfonts and amssym
Duality of Quasilocal Black Hole Thermodynamics
We consider T-duality of the quasilocal black hole thermodynamics for the
three-dimensional low energy effective string theory. Quasilocal thermodynamic
variables in the first law are explicitly calculated on a general axisymmetric
three-dimensional black hole solution and corresponding dual one. Physical
meaning of the dual invariance of the black hole entropy is considered in terms
of the Euclidean path integral formulation.Comment: 19 pages, Latex, no figures, to be published in Class. Quantum Grav.
Some minor changes, references adde
An excess power statistic for detection of burst sources of gravitational radiation
We examine the properties of an excess power method to detect gravitational
waves in interferometric detector data. This method is designed to detect
short-duration (< 0.5 s) burst signals of unknown waveform, such as those from
supernovae or black hole mergers. If only the bursts' duration and frequency
band are known, the method is an optimal detection strategy in both Bayesian
and frequentist senses. It consists of summing the data power over the known
time interval and frequency band of the burst. If the detector noise is
stationary and Gaussian, this sum is distributed as a chi-squared (non-central
chi-squared) deviate in the absence (presence) of a signal. One can use these
distributions to compute frequentist detection thresholds for the measured
power. We derive the method from Bayesian analyses and show how to compute
Bayesian thresholds. More generically, when only upper and/or lower bounds on
the bursts duration and frequency band are known, one must search for excess
power in all concordant durations and bands. Two search schemes are presented
and their computational efficiencies are compared. We find that given
reasonable constraints on the effective duration and bandwidth of signals, the
excess power search can be performed on a single workstation. Furthermore, the
method can be almost as efficient as matched filtering when a large template
bank is required. Finally, we derive generalizations of the method to a network
of several interferometers under the assumption of Gaussian noise.Comment: 22 pages, 6 figure
Response of the Brazilian gravitational wave detector to signals from a black hole ringdown
It is assumed that a black hole can be disturbed in such a way that a
ringdown gravitational wave would be generated. This ringdown waveform is well
understood and is modelled as an exponentially damped sinusoid. In this work we
use this kind of waveform to study the performance of the SCHENBERG
gravitational wave detector. This first realistic simulation will help us to
develop strategies for the signal analysis of this Brazilian detector. We
calculated the signal-to-noise ratio as a function of frequency for the
simulated signals and obtained results that show that SCHENBERG is expected to
be sensitive enough to detect this kind of signal up to a distance of .Comment: 5 pages, 4 figures, Amaldi 5 Conference Proceedings contribution.
Submitted to Class. Quantum Gra
Moduli, Scalar Charges, and the First Law of Black Hole Thermodynamics
We show that under variation of moduli fields the first law of black
hole thermodynamics becomes , where are the scalar charges. We also show
that the ADM mass is extremized at fixed , , when the moduli
fields take the fixed value which depend only on electric
and magnetic charges. It follows that the least mass of any black hole with
fixed conserved electric and magnetic charges is given by the mass of the
double-extreme black hole with these charges. Our work allows us to interpret
the previously established result that for all extreme black holes the moduli
fields at the horizon take a value depending only
on the electric and magnetic conserved charges: is such
that the scalar charges .Comment: 3 pages, no figures, more detailed versio
Finite size effects on thermal denaturation of globular proteins
Finite size effects on the cooperative thermal denaturation of proteins are
considered. A dimensionless measure of cooperativity, Omega, scales as N^zeta,
where N is the number of amino acids. Surprisingly, we find that zeta is
universal with zeta = 1 + gamma, where the exponent gamma characterizes the
divergence of the susceptibility for a self-avoiding walk. Our lattice model
simulations and experimental data are consistent with the theory. Our finding
rationalizes the marginal stability of proteins and substantiates the earlier
predictions that the efficient folding of two-state proteins requires the
folding transition temperature to be close to the collapse temperature.Comment: 3 figures. Physical Review Letters (in press
- …
