402 research outputs found
Paradigms for Parameterized Enumeration
The aim of the paper is to examine the computational complexity and
algorithmics of enumeration, the task to output all solutions of a given
problem, from the point of view of parameterized complexity. First we define
formally different notions of efficient enumeration in the context of
parameterized complexity. Second we show how different algorithmic paradigms
can be used in order to get parameter-efficient enumeration algorithms in a
number of examples. These paradigms use well-known principles from the design
of parameterized decision as well as enumeration techniques, like for instance
kernelization and self-reducibility. The concept of kernelization, in
particular, leads to a characterization of fixed-parameter tractable
enumeration problems.Comment: Accepted for MFCS 2013; long version of the pape
Do Hard SAT-Related Reasoning Tasks Become Easier in the Krom Fragment?
Many reasoning problems are based on the problem of satisfiability (SAT).
While SAT itself becomes easy when restricting the structure of the formulas in
a certain way, the situation is more opaque for more involved decision
problems. We consider here the CardMinSat problem which asks, given a
propositional formula and an atom , whether is true in some
cardinality-minimal model of . This problem is easy for the Horn
fragment, but, as we will show in this paper, remains -complete (and
thus -hard) for the Krom fragment (which is given by formulas in
CNF where clauses have at most two literals). We will make use of this fact to
study the complexity of reasoning tasks in belief revision and logic-based
abduction and show that, while in some cases the restriction to Krom formulas
leads to a decrease of complexity, in others it does not. We thus also consider
the CardMinSat problem with respect to additional restrictions to Krom formulas
towards a better understanding of the tractability frontier of such problems
Belief merging within fragments of propositional logic
Recently, belief change within the framework of fragments of propositional
logic has gained increasing attention. Previous works focused on belief
contraction and belief revision on the Horn fragment. However, the problem of
belief merging within fragments of propositional logic has been neglected so
far. This paper presents a general approach to define new merging operators
derived from existing ones such that the result of merging remains in the
fragment under consideration. Our approach is not limited to the case of Horn
fragment but applicable to any fragment of propositional logic characterized by
a closure property on the sets of models of its formulae. We study the logical
properties of the proposed operators in terms of satisfaction of merging
postulates, considering in particular distance-based merging operators for Horn
and Krom fragments.Comment: To appear in the Proceedings of the 15th International Workshop on
Non-Monotonic Reasoning (NMR 2014
The Complexity of Reasoning for Fragments of Autoepistemic Logic
Autoepistemic logic extends propositional logic by the modal operator L. A
formula that is preceded by an L is said to be "believed". The logic was
introduced by Moore 1985 for modeling an ideally rational agent's behavior and
reasoning about his own beliefs. In this paper we analyze all Boolean fragments
of autoepistemic logic with respect to the computational complexity of the
three most common decision problems expansion existence, brave reasoning and
cautious reasoning. As a second contribution we classify the computational
complexity of counting the number of stable expansions of a given knowledge
base. To the best of our knowledge this is the first paper analyzing the
counting problem for autoepistemic logic
Expected number of locally maximal solutions for random Boolean CSPs
International audienceFor a large number of random Boolean constraint satisfaction problems, such as random -SAT, we study how the number of locally maximal solutions evolves when constraints are added. We give the exponential order of the expected number of these distinguished solutions and prove it depends on the sensitivity of the allowed constraint functions only. As a by-product we provide a general tool for computing an upper bound of the satisfiability threshold for any problem of a large class of random Boolean CSPs
Complexity classifications for different equivalence and audit problems for Boolean circuits
We study Boolean circuits as a representation of Boolean functions and
consider different equivalence, audit, and enumeration problems. For a number
of restricted sets of gate types (bases) we obtain efficient algorithms, while
for all other gate types we show these problems are at least NP-hard.Comment: 25 pages, 1 figur
On the Complexity of Finding Second-Best Abductive Explanations
While looking for abductive explanations of a given set of manifestations, an
ordering between possible solutions is often assumed. The complexity of
finding/verifying optimal solutions is already known. In this paper we consider
the computational complexity of finding second-best solutions. We consider
different orderings, and consider also different possible definitions of what a
second-best solution is
06401 Abstracts Collection -- Complexity of Constraints
From 01.10.06 to 06.10.06, the Dagstuhl Seminar 06401 ``Complexity of Constraints\u27\u27 was held in the International Conference and Research Center (IBFI),
Schloss Dagstuhl.
During the seminar, several participants presented their current
research, and ongoing work and open problems were discussed. Abstracts of
the presentations given during the seminar as well as abstracts of
seminar results and ideas are put together in this paper. The first section
describes the seminar topics and goals in general.
Links to extended abstracts or full papers are provided, if available
- …
