402 research outputs found

    Paradigms for Parameterized Enumeration

    Full text link
    The aim of the paper is to examine the computational complexity and algorithmics of enumeration, the task to output all solutions of a given problem, from the point of view of parameterized complexity. First we define formally different notions of efficient enumeration in the context of parameterized complexity. Second we show how different algorithmic paradigms can be used in order to get parameter-efficient enumeration algorithms in a number of examples. These paradigms use well-known principles from the design of parameterized decision as well as enumeration techniques, like for instance kernelization and self-reducibility. The concept of kernelization, in particular, leads to a characterization of fixed-parameter tractable enumeration problems.Comment: Accepted for MFCS 2013; long version of the pape

    Do Hard SAT-Related Reasoning Tasks Become Easier in the Krom Fragment?

    Full text link
    Many reasoning problems are based on the problem of satisfiability (SAT). While SAT itself becomes easy when restricting the structure of the formulas in a certain way, the situation is more opaque for more involved decision problems. We consider here the CardMinSat problem which asks, given a propositional formula ϕ\phi and an atom xx, whether xx is true in some cardinality-minimal model of ϕ\phi. This problem is easy for the Horn fragment, but, as we will show in this paper, remains Θ2\Theta_2-complete (and thus NP\mathrm{NP}-hard) for the Krom fragment (which is given by formulas in CNF where clauses have at most two literals). We will make use of this fact to study the complexity of reasoning tasks in belief revision and logic-based abduction and show that, while in some cases the restriction to Krom formulas leads to a decrease of complexity, in others it does not. We thus also consider the CardMinSat problem with respect to additional restrictions to Krom formulas towards a better understanding of the tractability frontier of such problems

    Belief merging within fragments of propositional logic

    Full text link
    Recently, belief change within the framework of fragments of propositional logic has gained increasing attention. Previous works focused on belief contraction and belief revision on the Horn fragment. However, the problem of belief merging within fragments of propositional logic has been neglected so far. This paper presents a general approach to define new merging operators derived from existing ones such that the result of merging remains in the fragment under consideration. Our approach is not limited to the case of Horn fragment but applicable to any fragment of propositional logic characterized by a closure property on the sets of models of its formulae. We study the logical properties of the proposed operators in terms of satisfaction of merging postulates, considering in particular distance-based merging operators for Horn and Krom fragments.Comment: To appear in the Proceedings of the 15th International Workshop on Non-Monotonic Reasoning (NMR 2014

    The Complexity of Reasoning for Fragments of Autoepistemic Logic

    Get PDF
    Autoepistemic logic extends propositional logic by the modal operator L. A formula that is preceded by an L is said to be "believed". The logic was introduced by Moore 1985 for modeling an ideally rational agent's behavior and reasoning about his own beliefs. In this paper we analyze all Boolean fragments of autoepistemic logic with respect to the computational complexity of the three most common decision problems expansion existence, brave reasoning and cautious reasoning. As a second contribution we classify the computational complexity of counting the number of stable expansions of a given knowledge base. To the best of our knowledge this is the first paper analyzing the counting problem for autoepistemic logic

    Expected number of locally maximal solutions for random Boolean CSPs

    No full text
    International audienceFor a large number of random Boolean constraint satisfaction problems, such as random kk-SAT, we study how the number of locally maximal solutions evolves when constraints are added. We give the exponential order of the expected number of these distinguished solutions and prove it depends on the sensitivity of the allowed constraint functions only. As a by-product we provide a general tool for computing an upper bound of the satisfiability threshold for any problem of a large class of random Boolean CSPs

    Complexity classifications for different equivalence and audit problems for Boolean circuits

    Get PDF
    We study Boolean circuits as a representation of Boolean functions and consider different equivalence, audit, and enumeration problems. For a number of restricted sets of gate types (bases) we obtain efficient algorithms, while for all other gate types we show these problems are at least NP-hard.Comment: 25 pages, 1 figur

    On the Complexity of Finding Second-Best Abductive Explanations

    Get PDF
    While looking for abductive explanations of a given set of manifestations, an ordering between possible solutions is often assumed. The complexity of finding/verifying optimal solutions is already known. In this paper we consider the computational complexity of finding second-best solutions. We consider different orderings, and consider also different possible definitions of what a second-best solution is

    06401 Abstracts Collection -- Complexity of Constraints

    Get PDF
    From 01.10.06 to 06.10.06, the Dagstuhl Seminar 06401 ``Complexity of Constraints\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available
    corecore