2,874 research outputs found

    Application of the methods of celestial mechanics to the rigid body problem Final report, 1 Jul. 1965 - 1 Jun. 1966

    Get PDF
    Celestial mechanics perturbation methods applied to problem of describing motion of rigid artificial earth satellite about its center of mas

    HST Observations of the Double-Peaked Emission Lines in the Seyfert Galaxy Markarian 78: Mass Outflows from a Single AGN

    Full text link
    Previous ground based observations of the Seyfert 2 galaxy Mrk 78 revealed a double set of emission lines, similar to those seen in several AGN from recent surveys. Are the double lines due to two AGN with different radial velocities in the same galaxy, or are they due to mass outflows from a single AGN?We present a study of the outflowing ionized gas in the resolved narrow-line region (NLR) of Mrk 78 using observations from Space Telescope Imaging Spectrograph (STIS) and Faint Object Camera (FOC) aboard the Hubble Space Telescope(HST) as part of an ongoing project to determine the kinematics and geometries of active galactic nuclei (AGN) outflows. From the spectroscopic information, we deter- mined the fundamental geometry of the outflow via our kinematics modeling program by recreating radial velocities to fit those seen in four different STIS slit positions. We determined that the double emission lines seen in ground-based spectra are due to an asymmetric distribution of outflowing gas in the NLR. By successfully fitting a model for a single AGN to Mrk 78, we show that it is possible to explain double emission lines with radial velocity offsets seen in AGN similar to Mrk 78 without requiring dual supermassive black holes.Comment: 22 pages, 7 figures (2 color), accepted for publication in The Astrophysical Journa

    [O III]λ5007\lambda 5007 and X-ray Properties of a Complete Sample of Hard X-ray Selected AGNs in the Local Universe

    Full text link
    We study the correlation between the [O III]λ5007\lambda 5007 and X-ray luminosities of local Active Galactic Nuclei (AGNs), using a complete, hard X-ray (>10>10 keV) selected sample in the Swift/BAT 9-month catalog. From our optical spectroscopic observations at the South African Astronomical Observatory and the literature, a catalog of [O III]λ5007\lambda 5007 line flux for all 103 AGNs at Galactic latitudes of b>15|b|>15^\circ is complied. Significant correlations with intrinsic X-ray luminosity (LXL_{\rm X}) are found both for observed (L[O III]L_{\rm [O~III]}) and extinction-corrected (L[O III]corL_{\rm [O~III]}^{\rm cor}) luminosities, separately for X-ray unabsorbed and absorbed AGNs. We obtain the regression form of L[O III]L_{\rm [O~III]} L210  keV1.18±0.07\propto L_{\rm 2-10\; keV}^{1.18\pm0.07} and L[O III]corL_{\rm [O~III]}^{\rm cor} L210  keV1.16±0.09\propto L_{\rm 2-10\; keV}^{1.16\pm0.09} from the whole sample. The absorbed AGNs with low (<<0.5\%) scattering fractions in soft X-rays show on average smaller L[O III]/LXL_{\rm [O~III]}/L_{\rm X} and L[O III]cor/LXL_{\rm [O~III]}^{\rm cor}/L_{\rm X} ratios than the other absorbed AGNs, while those in edge-on host galaxies do not. These results suggest that a significant fraction of this population are buried in tori with small opening angles. By using these L[O III]L_{\rm [O~III]} vs. LXL_{\rm X} correlations, the X-ray luminosity function of local AGNs (including Compton thick AGNs) in a standard population synthesis model gives much better agreement with the [O III]λ5007\lambda 5007 luminosity function derived from the Sloan Digital Sky Survey than previously reported. This confirms that hard X-ray observations are a very powerful tool to find AGNs with high completeness.Comment: 14 pages including 11 figures and 3 tables, accepted for publication in ApJ. In this manuscript, the observed 14-195 keV luminosities in Table 1 have been corrected to be exactly the same as in the original Swift/BAT 9-month catalog. Accordingly, Figures 2(a) and 3(a) and a part of Tables 2 and 3 have been updated. The changes from the previous version are small and do not affect the tex

    Spatially-Resolved Spectra of the "Teacup" AGN: Tracing the History of a Dying Quasar

    Get PDF
    The Sloan Digital Sky Survey (SDSS) Galaxy Zoo project has revealed a number of spectacular galaxies possessing Extended Emission-Line Regions (EELRs), the most famous being Hanny's Voorwerp galaxy. We present another EELR object discovered in the SDSS endeavor: the Teacup Active Galactic Nucleus (AGN), nicknamed for its EELR, which has a handle like structure protruding 15 kpc into the northeast quadrant of the galaxy. We analyze physical conditions of this galaxy with long-slit ground based spectroscopy from Lowell, Lick, and KPNO observatories. With the Lowell 1.8m Perkin's telescope we took multiple observations at different offset positions, allowing us to recover spatially resolved spectra across the galaxy. Line diagnostics indicate the ionized gas is photoionized primarily by the AGN. Additionally we are able to derive the hydrogen density from the [S II] 6716/6731 ratio. We generated two-component photoionization models for each spatially resolved Lowell spectrum. These models allow us to calculate the AGN bolometric luminosity seen by the gas at different radii from the nuclear center of the Teacup. Our results show a drop in bolometric luminosity by more than two orders of magnitude from the EELR to the nucleus, suggesting that the AGN has decreased in luminosity by this amount in a continuous fashion over 46,000 years, supporting the case for a dying AGN in this galaxy independent of any IR based evidence. We demonstrate that spatially resolved photoionization modeling could be applied to EELRs to investigate long time scale variability.Comment: 38 pages, 11 figures, accepted for publication in the Astrophysical Journa

    Spitzer/IRS Observations of Seyfert 1.8s and 1.9s: A Comparison with Seyfert 1s and Seyfert 2s

    Get PDF
    We present Spitzer Space Telescope mid-infrared spectra of 12 Seyfert 1.8 and 1.9 galaxies over the 5-38 um region. We compare the spectral characteristics of this sample to those of 58 Seyfert 1 and Seyfert 2 galaxies from the Spitzer archives. An analysis of the spectral shapes, the silicate 10 um feature and the emission line fluxes have enabled us to characterize the mid-IR properties of Seyfert 1.8/1.9s. We find that the equivalent widths of the 10 um silicate feature are generally weak in all Seyfert galaxies, as previously reported by several studies. The few Seyfert galaxies in this sample that show deep 10 um silicate absorption features are highly inclined and/or merging galaxies. It is likely that these absorption features originate primarily in the dusty interstellar medium of the host galaxy rather than in a dusty torus on parsec scales close to the central engine. We find that the equivalent width of the polycyclic aromatic hydrocarbon (PAH) band at 6.2 um correlates strongly with the 20-30 um spectral index. Either of these quantities are good indicators of the amount of starburst contribution to the mid-IR spectra. The spectra of Seyfert 1.8 and 1.9s are dominated by these starburst features, similar to most Seyfert 2s. They show strong PAH bands and a strong red continuum toward 30 um. The strengths of the high-ionization forbidden narrow emission lines [O IV] 25.89 um, [Ne III] 15.56 um and [Ne V] 14.32 um relative to [Ne II] 12.81 um are weaker in Seyfert 1.8/1.9s and Seyfert 2s as compared to Seyfert 1s. The weakness of high-ionization lines in Seyfert 1.8-1.9s is suggestive of intrinsically weak active galactic nuclei (AGN) continua, and/or stronger star formation activity leading to enhanced [Ne II]. We discuss the implications of these observational results in the context of the Unified Model of AGN.Comment: 36 pages, 4 tables, 6 figures, Accepted for publication in The Astrophysical Journal, December 200

    High resolution study of associated C IV absorption systems in NGC 5548

    Get PDF
    We present the results of a careful analysis of associated absorption systems toward NGC 5548. Most of the well resolved narrow components in the associated system, defined by the Lyman alpha, C IV and N V profiles, show velocity separation similar (to within 10~\kms) to the C IV doublet splitting. We estimate the chance probability of occurrence of such pairs with velocity separation equal to C IV doublet splitting to be 6×1036\times10^{-3}. Thus it is more likely that most of the narrow components are line-locked with C IV doublet splitting. This will mean that the radiative acceleration plays an important role in the kinematics of the absorbing clouds. We build grids of photoionization models and estimate the radiative acceleration due to all possible bound-bound transitions. We show that the clouds producing absorption have densities less than 109cm310^9 cm^{-3}, and are in the outer regions of the broad emission line region (BLR). We note that the clouds which are line-locked cannot produce appreciable optical depths of O VII and O VIII, and hence cannot be responsible for the observed ionized edges, in the soft X-ray. We discuss the implications of the presence of optically thin clouds in the outer regions of the BLR to the models of broad emission lines.Comment: 21 pages, latex (aasms4 style), incluedes 4 ps figures. To appear in Astrophysical Journa

    New Indicators for AGN Power: The Correlation Between [O IV] lambda 25.89 micron and Hard X-ray Luminosity for Nearby Seyfert Galaxies

    Full text link
    We have studied the relationship between the [O IV] lambda 25.89 micron emission line luminosities, obtained from Spitzer spectra, the X-ray continua in the 2-10 keV band, primarily from ASCA, and the 14-195 keV band obtained with the SWIFT/Burst Alert Telescope (BAT), for a sample of nearby (z < 0.08) Seyfert galaxies. For comparison, we have examined the relationship between the [O III] 5007, the 2-10 keV and the 14-195 keV luminosities for the same set of objects. We find that both the [O IV] and [O III] luminosities are well-correlated with the BAT luminosities. On the other hand, the [O III] luminosities are better-correlated with 2-10 keV luminosities than are those of [O IV]. When comparing [O IV] and [O III] luminosities for the different types of galaxies, we find that the Seyfert 2's have significantly lower [O III] to [O IV] ratios than the Seyfert 1's. We suggest that this is due to more reddening of the narrow line region (NLR) of the Seyfert 2's. Assuming Galactic dust to gas ratios, the average amount of extra reddening corresponds to a hydrogen column density of ~ few times 10^21 cm^-2, which is a small fraction of the X-ray absorbing columns in the Seyfert 2's. The combined effects of reddening and the X-ray absorption are the probable reason why the [O III] versus 2-10 keV correlation is better than the [O IV] versus 2-10 keV, since the [O IV] emission line is much less affected by extinction. Overall, we find the [O IV] to be an accurate and truly isotropic indicator of the power of the AGN. This suggests that it can be useful in deconvolving the contribution of the AGN and starburst to the spectrum of Compton-thick and/or X-ray weak sources.Comment: Accepted for publication in the Astrophysical Journal. 31 pages, 6 figures, 4 table
    corecore