1,788 research outputs found

    An Observational Cohort Study on Delayed-Onset Infections after Mandibular Third-Molar Extractions.

    Get PDF
    OBJECTIVES: The purpose of the present study was to investigate the occurrence and clinical features of delayed-onset infections after mandibular third-molar extractions. METHOD AND MATERIALS: An observational cohort study was conducted on 179 patients undergoing mandibular third-molar extraction between January 2013 and December 2015, for a total of 217 extractions. Data were recorded at the time of extraction (T0), on suture removal seven days later (T1), and 30 days after the extraction, when patients were contacted and asked about their healing process (T2). The statistical analysis was performed with nonparametric tests. A p value lower than 0.05 was considered statistically significant. RESULTS: Eight delayed-onset infections were recorded, amounting to 3.7% of all extractions. The median time elapsing from the extraction to the delayed-onset infection was 35 days (IQR 28-40; min 24-max 49). Younger age and longer surgical procedures seemed to be more often associated with this complication. CONCLUSION: Delayed-onset infections after third-molar extractions are relatively rare postoperative complications characterized by a swelling, usually with a purulent discharge. Patients should be informed of this possibility, which might develop even several weeks after the extraction

    Uso do ultra-som em programas de reprodução de peixes nativos

    Get PDF
    bitstream/CPAP/56070/1/COT62.pdfFormato eletrônic

    Ultrafast photodoping and effective Fermi-Dirac distribution of the Dirac particles in Bi2Se3

    Full text link
    We exploit time- and angle- resolved photoemission spectroscopy to determine the evolution of the out-of-equilibrium electronic structure of the topological insulator Bi2Se. The response of the Fermi-Dirac distribution to ultrashort IR laser pulses has been studied by modelling the dynamics of the hot electrons after optical excitation. We disentangle a large increase of the effective temperature T* from a shift of the chemical potential mu*, which is consequence of the ultrafast photodoping of the conduction band. The relaxation dynamics of T* and mu* are k-independent and these two quantities uniquely define the evolution of the excited charge population. We observe that the energy dependence of the non-equilibrium charge population is solely determined by the analytical form of the effective Fermi-Dirac distribution.Comment: 5 Pages, 3 Figure

    Ultrafast Optical Control of the Electronic Properties of ZrTe5ZrTe_5

    Get PDF
    We report on the temperature dependence of the ZrTe5ZrTe_5 electronic properties, studied at equilibrium and out of equilibrium, by means of time and angle resolved photoelectron spectroscopy. Our results unveil the dependence of the electronic band structure across the Fermi energy on the sample temperature. This finding is regarded as the dominant mechanism responsible for the anomalous resistivity observed at T* \sim 160 K along with the change of the charge carrier character from holelike to electronlike. Having addressed these long-lasting questions, we prove the possibility to control, at the ultrashort time scale, both the binding energy and the quasiparticle lifetime of the valence band. These experimental evidences pave the way for optically controlling the thermoelectric and magnetoelectric transport properties of ZrTe5ZrTe_5

    Cancer and in general long-term ilnesses at workplaces

    Get PDF
    Studio commissionato dal Comitato Occupazione e Affari sociali del Parlamento europe

    Ag-coverage-dependent symmetry of the electronic states of the Pt(111)-Ag-Bi interface: The ARPES view of a structural transition

    Get PDF
    We studied by angle-resolved photoelectron spectroscopy the strain-related structural transition from a pseudomorphic monolayer (ML) to a striped incommensurate phase in an Ag thin film grown on Pt(111). We exploited the surfactant properties of Bi to grow ordered Pt(111)-xMLAg-Bi trilayers with 0 < x < 5 ML, and monitored the dispersion of the Bi-derived interface states to probe the structure of the underlying Ag film. We find that their symmetry changes from threefold to sixfold and back to threefold in the Ag coverage range studied. Together with previous scanning tunneling microscopy and photoelectron diffraction data, these results provide a consistent microscopic description of the coverage-dependent structural transition.Comment: 10 pages, 9 figure

    The momentum and photon energy dependence of the circular dichroic photoemission in the bulk Rashba semiconductors BiTeX (X = I, Br, Cl)

    Get PDF
    Bulk Rashba systems BiTeX (X = I, Br, Cl) are emerging as important candidates for developing spintronics devices, because of the coexistence of spin-split bulk and surface states, along with the ambipolar character of the surface charge carriers. The need of studying the spin texture of strongly spin-orbit coupled materials has recently promoted circular dichroic Angular Resolved Photoelectron Spectroscopy (cd-ARPES) as an indirect tool to measure the spin and the angular degrees of freedom. Here we report a detailed photon energy dependent study of the cd-ARPES spectra in BiTeX (X = I, Br and Cl). Our work reveals a large variation of the magnitude and sign of the dichroism. Interestingly, we find that the dichroic signal modulates differently for the three compounds and for the different spin-split states. These findings show a momentum and photon energy dependence for the cd-ARPES signals in the bulk Rashba semiconductor BiTeX (X = I, Br, Cl). Finally, the outcome of our experiment indicates the important relation between the modulation of the dichroism and the phase differences between the wave-functions involved in the photoemission process. This phase difference can be due to initial or final state effects. In the former case the phase difference results in possible interference effects among the photo-electrons emitted from different atomic layers and characterized by entangled spin-orbital polarized bands. In the latter case the phase difference results from the relative phases of the expansion of the final state in different outgoing partial waves.Comment: 6 pages, 4 figure

    Momentum resolved spin dynamics of bulk and surface excited states in the topological insulator Bi2Se3\mathrm{Bi_{2}Se_{3}}

    Full text link
    The prospective of optically inducing a spin polarized current for spintronic devices has generated a vast interest in the out-of-equilibrium electronic and spin structure of topological insulators (TIs). In this Letter we prove that only by measuring the spin intensity signal over several order of magnitude in spin, time and angle resolved photoemission spectroscopy (STAR-PES) experiments is it possible to comprehensively describe the optically excited electronic states in TIs materials. The experiments performed on Bi2Se3\mathrm{Bi_{2}Se_{3}} reveal the existence of a Surface-Resonance-State in the 2nd bulk band gap interpreted on the basis of fully relativistic ab-initio spin resolved photoemission calculations. Remarkably, the spin dependent relaxation of the hot carriers is well reproduced by a spin dynamics model considering two non-interacting electronic systems, derived from the excited surface and bulk states, with different electronic temperatures.Comment: 5 pages and 4 figure
    corecore