2,180 research outputs found
Crop ontology in support of conservation and use of banana genetic resources
Poster presented at Workshop on Crop Ontology and Phenotyping Data Interoperability. Montpellier (France), 31 Mar-4 Apr 201
Attending to characters in neural sequence labeling models
Sequence labeling architectures use word embeddings for capturing similarity, but suffer when
handling previously unseen or rare words. We investigate character-level extensions to such
models and propose a novel architecture for combining alternative word representations. By
using an attention mechanism, the model is able to dynamically decide how much information to
use from a word- or character-level component. We evaluated different architectures on a range of
sequence labeling datasets, and character-level extensions were found to improve performance
on every benchmark. In addition, the proposed attention-based architecture delivered the best
results even with a smaller number of trainable parameters
Non-equilibrium Casimir forces: Spheres and sphere-plate
We discuss non-equilibrium extensions of the Casimir force (due to
electromagnetic fluctuations), where the objects as well as the environment are
held at different temperatures. While the formalism we develop is quite
general, we focus on a sphere in front of a plate, as well as two spheres, when
the radius is small compared to separation and thermal wavelengths. In this
limit the forces can be expressed analytically in terms of the lowest order
multipoles, and corroborated with results obtained by diluting parallel plates
of vanishing thickness. Non-equilibrium forces are generally stronger than
their equilibrium counterpart, and may oscillate with separation (at a scale
set by material resonances). For both geometries we obtain stable points of
zero net force, while two spheres may have equal forces in magnitude and
direction resulting in a self-propelling state.Comment: 6 pages, 6 figure
Trace formulae for non-equilibrium Casimir interactions, heat radiation and heat transfer for arbitrary objects
We present a detailed derivation of heat radiation, heat transfer and
(Casimir) interactions for N arbitrary objects in the framework of
fluctuational electrodynamics in thermal non-equilibrium. The results can be
expressed as basis-independent trace formulae in terms of the scattering
operators of the individual objects. We prove that heat radiation of a single
object is positive, and that heat transfer (for two arbitrary passive objects)
is from the hotter to a colder body. The heat transferred is also symmetric,
exactly reversed if the two temperatures are exchanged. Introducing partial
wave-expansions, we transform the results for radiation, transfer and forces
into traces of matrices that can be evaluated in any basis, analogous to the
equilibrium Casimir force. The method is illustrated by (re)deriving the heat
radiation of a plate, a sphere and a cylinder. We analyze the radiation of a
sphere for different materials, emphasizing that a simplification often
employed for metallic nano-spheres is typically invalid. We derive asymptotic
formulae for heat transfer and non-equilibrium interactions for the cases of a
sphere in front a plate and for two spheres, extending previous results. As an
example, we show that a hot nano-sphere can levitate above a plate with the
repulsive non-equilibrium force overcoming gravity -- an effect that is not due
to radiation pressure.Comment: 29 pages, 6 figures (v2: Sentence added in Sec. 1
Importance of correlation effects in hcp iron revealed by a pressure-induced electronic topological transition
We discover that hcp phases of Fe and Fe0.9Ni0.1 undergo an electronic
topological transition at pressures of about 40 GPa. This topological change of
the Fermi surface manifests itself through anomalous behavior of the Debye
sound velocity, c/a lattice parameter ratio and M\"ossbauer center shift
observed in our experiments. First-principles simulations within the dynamic
mean field approach demonstrate that the transition is induced by many-electron
effects. It is absent in one-electron calculations and represents a clear
signature of correlation effects in hcp Fe
The effect of regional citrate anti-coagulation on the coagulation system in critically ill patients receiving continuous renal replacement therapy for acute kidney injury - An observational cohort study
BACKGROUND: Regional anticoagulation with citrate is the recommended first line treatment for patients receiving continuous renal replacement therapy (CRRT). There is wide variability in filter patency which may be due to differences in patient characteristics and local practice. It is also possible that citrate has effects on primary and secondary haemostasis, fibrinolysis and platelet function that are still unknown. The primary aim of the study is to describe the effect of citrate on coagulation and fibrinolysis pathways in both the patient and the haemodialysis circuit.
METHODS: The study will recruit 12 adult patients admitted to the intensive care unit, requiring CRRT with regional citrate anticoagulation for acute kidney injury. Patients with pre-existing thrombotic or bleeding tendencies will be excluded. Thrombin generation, clot lysis and platelet function will be measured at baseline and at 12, 24, 36, 48 and 72 h after commencing CRRT (from the patient and from the circuit). We will describe the evolution of parameters over time as well as the differences in parameters between the patient and the circuit.
DISCUSSION: The study will provide new data on the effects of citrate during continuous renal replacement therapy which is not currently available. We will minimise confounding factors through the use of tight exclusion criteria and accept that this will slow down recruitment. Depending on the results, we hope to incorporate the findings into existing clinical guidelines and clinical practice with the aim to prevent premature filter clotting and interruptions in treatment.
TRIAL REGISTRATION: The study was registered with clinicaltrials.gov on 10th June 2015 (NCT02486614)
The Atacama Cosmology Telescope: Physical Properties of Sunyaev-Zel'dovich Effect Clusters on the Celestial Equator
We present the optical and X-ray properties of 68 galaxy clusters selected
via the Sunyaev-Zel'dovich Effect at 148 GHz by the Atacama Cosmology Telescope
(ACT). Our sample, from an area of 504 square degrees centered on the celestial
equator, is divided into two regions. The main region uses 270 square degrees
of the ACT survey that overlaps with the co-added ugriz imaging from the Sloan
Digital Sky Survey (SDSS) over Stripe 82 plus additional near-infrared pointed
observations with the Apache Point Observatory 3.5-meter telescope. We confirm
a total of 49 clusters to z~1.3, of which 22 (all at z>0.55) are new
discoveries. For the second region the regular-depth SDSS imaging allows us to
confirm 19 more clusters up to z~0.7, of which 10 systems are new. We present
the optical richness, photometric redshifts, and separation between the SZ
position and the brightest cluster galaxy (BCG). We find no significant offset
between the cluster SZ centroid and BCG location and a weak correlation between
optical richness and SZ-derived mass. We also present X-ray fluxes and
luminosities from the ROSAT All Sky Survey which confirm that this is a massive
sample. One of the newly discovered clusters, ACT-CL J0044.4+0113 at z=1.1
(photometric), has an integrated XMM-Newton X-ray temperature of kT_x=7.9+/-1.0
keV and combined mass of M_200a=8.2(-2.5,+3.3)x10^14 M_sun/h70 placing it among
the most massive and X-ray-hot clusters known at redshifts beyond z=1. We also
highlight the optically-rich cluster ACT-CL J2327.4-0204 (RCS2 2327) at z=0.705
(spectroscopic) as the most significant detection of the whole equatorial
sample with a Chandra-derived mass of M_200a=1.9(-0.4,+0.6)x10^15 M_sun/h70,
comparable to some of the most massive known clusters like "El Gordo" and the
Bullet Cluster.Comment: 18 pages, 12 figures. Accepted to the Astrophysical Journal. New
version includes minor changes in the accepted pape
- …
