49 research outputs found
Comparative histopathology of two novel bacterial insecticidal proteins in Tenebrio molitor and Diabrotica virgifera virgifera larvae
Transcriptome Profiling of the Intoxication Response of Tenebrio molitor Larvae to Bacillus thuringiensis Cry3Aa Protoxin
Bacillus thuringiensis (Bt) crystal (Cry) proteins are effective against a select number of insect pests, but improvements are needed to increase efficacy and decrease time to mortality for coleopteran pests. To gain insight into the Bt intoxication process in Coleoptera, we performed RNA-Seq on cDNA generated from the guts of Tenebrio molitor larvae that consumed either a control diet or a diet containing Cry3Aa protoxin. Approximately 134,090 and 124,287 sequence reads from the control and Cry3Aa-treated groups were assembled into 1,318 and 1,140 contigs, respectively. Enrichment analyses indicated that functions associated with mitochondrial respiration, signalling, maintenance of cell structure, membrane integrity, protein recycling/synthesis, and glycosyl hydrolases were significantly increased in Cry3Aa-treated larvae, whereas functions associated with many metabolic processes were reduced, especially glycolysis, tricarboxylic acid cycle, and fatty acid synthesis. Microarray analysis was used to evaluate temporal changes in gene expression after 6, 12 or 24 h of Cry3Aa exposure. Overall, microarray analysis indicated that transcripts related to allergens, chitin-binding proteins, glycosyl hydrolases, and tubulins were induced, and those related to immunity and metabolism were repressed in Cry3Aa-intoxicated larvae. The 24 h microarray data validated most of the RNA-Seq data. Of the three intoxication intervals, larvae demonstrated more differential expression of transcripts after 12 h exposure to Cry3Aa. Gene expression examined by three different methods in control vs. Cry3Aa-treated larvae at the 24 h time point indicated that transcripts encoding proteins with chitin-binding domain 3 were the most differentially expressed in Cry3Aa-intoxicated larvae. Overall, the data suggest that T. molitor larvae mount a complex response to Cry3Aa during the initial 24 h of intoxication. Data from this study represent the largest genetic sequence dataset for T. molitor to date. Furthermore, the methods in this study are useful for comparative analyses in organisms lacking a sequenced genome
Comparative Proteomic Analysis of Aedes aegypti Larval Midgut after Intoxication with Cry11Aa Toxin from Bacillus thuringiensis
Cry toxins produced by Bacillus thuringiensis bacteria are environmentally safe alternatives to control insect pests. They are pore-forming toxins that specifically affect cell permeability and cellular integrity of insect-midgut cells. In this work we analyzed the defensive response of Aedes aegypti larva to Cry11Aa toxin intoxication by proteomic and functional genomic analyses. Two dimensional differential in-gel electrophoresis (2D-DIGE) was utilized to analyze proteomic differences among A. aegypti larvae intoxicated with different doses of Cry11Aa toxin compared to a buffer treatment. Spots with significant differential expression (p<0.05) were then identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS), revealing 18 up-regulated and seven down-regulated proteins. The most abundant subcategories of differentially expressed proteins were proteins involved in protein turnover and folding, energy production, and cytoskeleton maintenance. We selected three candidate proteins based on their differential expression as representatives of the different functional categories to perform gene silencing by RNA interference and analyze their functional role. The heat shock protein HSP90 was selected from the proteins involved in protein turnover and chaperones; actin, was selected as representative of the cytoskeleton protein group, and ATP synthase subunit beta was selected from the group of proteins involved in energy production. When we affected the expression of ATP synthase subunit beta and actin by silencing with RNAi the larvae became hypersensitive to toxin action. In addition, we found that mosquito larvae displayed a resistant phenotype when the heat shock protein was silenced. These results provide insight into the molecular components influencing the defense to Cry toxin intoxication and facilitate further studies on the roles of identified genes
Identification, cloning, and expression of a GHF9 cellulase from Tribolium castaneum (Coleoptera: Tenebrionidae)
Characterization of cellulolytic activity from digestive fluids of Dissosteira carolina (Orthoptera: Acrididae)
Characterization of cellulolytic activity from digestive fluids of Dissosteira carolina (Orthoptera: Acrididae)." Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 157(3
Previous screening of head-derived and gut fluid extracts of Carolina grasshoppers, Dissosteira carolina (L.) revealed relatively high activity against cellulase substrates when compared to other insect groups. In this work we report on the characterization and identification of enzymes involved in cellulolytic activity in digestive fluids of D. carolina. In zymograms using carboxymethylcellulose (CMC) as substrate, we detected four distinct cellulolytic protein bands in D. carolina gut fluids, common to all developmental stages. These cellulolytic enzymes were localized to foregut and midgut regions of the D. carolina digestive tract. Cellulases were purified from D. carolina head and gut fluid extracts by liquid chromatography to obtain N-terminal amino acid sequence tags. Database searches with sequence tags from head fluids indicated high similarity with invertebrate, bacterial and plant β1,4-endoglucanases, while no homologues were identified for the gut-derived protein. Our data demonstrate the presence of cellulolytic activity in the digestive system of D. carolina and suggest that cellulases of endogenous origin are present in this organism. Considering that this grasshopper species is a pest of grasses, including switchgrass that has been suggested bioethanol feedstock, characterization of insect cellulolytic systems may aid in developing applications for plant biomass biodegradation for biofuel production
Identification, RNAi knockdown, and functional analysis of an ejaculate protein that mediates a postmating, prezygotic phenotype in a cricket.
Postmating, prezygotic phenotypes, especially those that underlie reproductive isolation between closely related species, have been a central focus of evolutionary biologists over the past two decades. Such phenotypes are thought to evolve rapidly and be nearly ubiquitous among sexually reproducing eukaryotes where females mate with multiple partners. Because these phenotypes represent interplay between the male ejaculate and female reproductive tract, they are fertile ground for reproductive senescence--as ejaculate composition and female physiology typically change over an individual's life span. Although these phenotypes and their resulting dynamics are important, we have little understanding of the proteins that mediate these phenotypes, particularly for species groups where postmating, prezygotic traits are the primary mechanism of reproductive isolation. Here, we utilize proteomics, RNAi, mating experiments, and the Allonemobius socius complex of crickets, whose members are primarily isolated from one another by postmating, prezygotic phenotypes (including the ability of a male to induce a female to lay eggs), to demonstrate that one of the most abundant ejaculate proteins (a male accessory gland-biased protein similar to a trypsin-like serine protease) decreases in abundance over a male's reproductive lifetime and mediates the induction of egg-laying in females. These findings represent one of the first studies to identify a protein that plays a role in mediating both a postmating, prezygotic isolation pathway and reproductive senescence
Alpha-arylphorin is a mitogen in the Heliothis virescens midgut cell secretome upon Cry1Ac intoxication
Insecticidal crystal (Cry) proteins produced by the bacterium Bacillus thuringiensis (Bt) target cells in the midgut epithelium of susceptible larvae. While the mode of action of Cry toxins has been extensively investigated, the midgut response to Cry intoxication and its regulation are not well characterized. In this work, we describe the secreted proteome (secretome) of primary mature midgut cell cultures from Heliothis virescens larvae after exposure to Cry1Ac toxin compared to control buffer treatment. The Cry1Ac-induced secretome caused higher proliferation and differentiation and an overall reduction in total cell mortality over time in primary H. virescens midgut stem cell cultures when compared to treatment with control buffer secretome. Differential proteomics identified four proteins with significant differences in abundance comparing Cry1Ac-treated and control secretomes. The most significant difference detected in the Cry1Ac secretome was an arylphorin subunit alpha protein not detected in the control secretome. Feeding of purified alpha-arylphorin to H. virescens larvae resulted in midgut hyperplasia and significantly reduced susceptibility to Cry1Ac toxin compared to controls. These data identify alpha-arylphorin as a protein with a new putative role in the midgut regeneration process in response to Cry1Ac intoxication and possibly pathogen/abiotic stress, identifying alpha-arylphorin as a potential gene to target with insecticidal gene silencing for pest control
