410 research outputs found

    Fermion Tunneling from Dynamical Horizons

    Full text link
    The instability against emission of fermionic particles by the trapping horizon of an evolving black hole is analyzed using the Hamilton-Jacobi tunneling method. This method automatically selects one special expression for the surface gravity of a changing horizon. The results also apply to point masses embedded in an expanding universe. As a bonus of the tunneling method, we gain the insight that the surface gravity still defines a temperature parameter as long as the evolution is sufficiently slow that the black hole pass through a sequence of quasi-equilibrium states, and that black holes should be semi-classically unstable even in a hypothetical world without bosonic fields.Comment: 8 pages, standard Latex document, few references adde

    Hamilton-Jacobi Method and Gravitation

    Full text link
    Studying the behaviour of a quantum field in a classical, curved, spacetime is an extraordinary task which nobody is able to take on at present time. Independently by the fact that such problem is not likely to be solved soon, still we possess the instruments to perform exact predictions in special, highly symmetric, conditions. Aim of the present contribution is to show how it is possible to extract quantitative information about a variety of physical phenomena in very general situations by virtue of the so-called Hamilton-Jacobi method. In particular, we shall prove the agreement of such semi-classical method with exact results of quantum field theoretic calculations.Comment: To appear in the proceedings of "Cosmology, the Quantum Vacuum, and Zeta Functions": A workshop with a celebration of Emilio Elizalde's Sixtieth birthday, Bellaterra, Barcelona, Spain, 8-10 Mar 201

    On the Unruh effect in de Sitter space

    Full text link
    We give an interpretation of the temperature in de Sitter universe in terms of a dynamical Unruh effect associated with the Hubble sphere. As with the quantum noise perceived by a uniformly accelerated observer in static space-times, observers endowed with a proper motion can in principle detect the effect. In particular, we study a "Kodama observer" as a two-field Unruh detector for which we show the effect is approximately thermal. We also estimate the back-reaction of the emitted radiation and find trajectories associated with the Kodama vector fields are stable.Comment: 8 pages; corrected typos; sections structure revise

    Predicted properties of Galactic and Magellanic Classical Cepheids in the SDSS filters

    Get PDF
    We present the first extensive and detailed theoretical scenario for the interpretation of Cepheid properties observed in the SDSS filters. Three sets of nonlinear convective pulsation models, corresponding to the chemical compositions of Cepheids in the Milky Way, the Large Magellanic Cloud and the Small Magellanic Cloud respectively, are transformed into the SDSS bands by relying on updated model atmospheres. The resulting observables, namely the instability strip boundaries and the light curves, as well as the Period-Luminosity, the Wesenheit and the Period-Luminosity-Colour relations, are discussed as a function of the metal content, for both the fundamental and the first overtone mode. The fundamental PL relations are found to deviate from linear relations when computed over the whole observed Cepheid period range, especially at the shorter wavelenghts, confirming previous findings in the Johnson-Cousins bands. The obtained slopes are found to be mildly steeper than the ones of the semiempirical and the empirical relations available in the literature and covering roughly the same period range, with the discrepancy ranging from about 13% in u-band to about 3% in z.Comment: Accepted for publication in MNRA

    Evolved stars in the Local Group galaxies. I. AGB evolution and dust production in IC 1613

    Get PDF
    We used models of thermally-pulsing asymptotic giant branch (AGB) stars, that also describe the dust-formation process in the wind, to interpret the combination of near- and mid-infrared photometric data of the dwarf galaxy IC 1613. This is the first time that this approach is extended to an environment different from the Milky Way and the Magellanic Clouds (MCs). Our analysis, based on synthetic population techniques, shows a nice agreement between the observations and the expected distribution of stars in the colour-magnitude diagrams obtained with JHK and Spitzer bands. This allows a characterization of the individual stars in the AGB sample in terms of mass, chemical composition, and formation epoch of the progenitors. We identify the stars exhibiting the largest degree of obscuration as carbon stars evolving through the final AGB phases, descending from 1-1.25Msun objects of metallicity Z=0.001 and from 1.5-2.5Msun stars with Z=0.002. Oxygen-rich stars constitute the majority of the sample (65%), mainly low mass stars (<2Msun) that produce a negligible amount of dust (<10^{-7}Msun/yr). We predict the overall dust-production rate from IC 1613, mostly determined by carbon stars, to be 6x10^{-7}Msun/yr with an uncertainty of 30%. The capability of the current generation of models to interpret the AGB population in an environment different from the MCs opens the possibility to extend this kind of analysis to other Local Group galaxies.Comment: 14 pages, 6 figures, accepted for publication on MNRA

    On Tunnelling Through the Black Hole Horizon

    Full text link
    It is shown here that there is no way for particle creation to occur by quantum tunneling through an infinitesimal neighborhood of the black hole horizon. This result is a trivial consequence of the regularity of the horizon, the equivalence principle and the general covariance of the relativistic theory of gravity. Moreover, we also confirm the less trivial statement that no particle creation by quantum tunneling through the black hole horizon is possible independent of the size of the presupposed tunneling domain.Comment: 21 pages, new section is adde

    Stars caught in the braking stage in young Magellanic Clouds clusters

    Full text link
    The color-magnitude diagrams of many Magellanic Cloud clusters (with ages up to 2 billion years) display extended turnoff regions where the stars leave the main sequence, suggesting the presence of multiple stellar populations with ages which may differ even by hundreds million years (Mackey et al. 2008, Milone et al. 2009, Girardi et al. 2011). A strongly debated question is whether such an extended turnoff is instead due to populations with different stellar rotations (Girardi et al. 2011, Goudfrooij et al. 2011, Rubele et al. 2013, Li et al. 2014). The recent discovery of a `split' main sequence in some younger clusters (about 80--400Myr) added another piece to this puzzle. The blue (red) side of the main sequence is consistent with slowly (rapidly) rotating stellar models (D'Antona et al. 2015, Milone et al. 2016, Correnti et al. 2017, Milone et al 2016), but a complete theoretical characterization of the observed color-magnitude diagram appeared to require also an age spread (Correnti et al. 2017). We show here that, in three clusters so far analyzed, if the blue main sequence stars are interpreted with models that have been always slowly rotating, they must be about 30% younger than the rest of the cluster. If they are instead interpreted as stars initially rapidly rotating, but that have later slowed down, the age difference disappears, and "braking" also helps to explain the apparent age differences of the extended turnoff. The age spreads in Magellanic Cloud clusters are a manifestation of rotational stellar evolution. Observational tests are suggested.Comment: Accepted for publication and in state of Advance Online Publication (from 24 July 2017) on Nature Astronom
    corecore