76 research outputs found
Familial history of diabetes and clinical characteristics in Greek subjects with type 2 diabetes
<p>Abstract</p> <p>Background</p> <p>A lot of studies have showed an excess maternal transmission of type 2 diabetes (T2D). The aim, therefore, of the present study was to estimate the prevalence of familial history of T2D in Greek patients, and to evaluate its potential effect on the patient's metabolic control and the presence of diabetic complications.</p> <p>Methods</p> <p>A total of 1,473 T2D patients were recruited. Those with diabetic mothers, diabetic fathers, diabetic relatives other than parents and no known diabetic relatives, were considered separately.</p> <p>Results</p> <p>The prevalence of diabetes in the mother, the father and relatives other than parents, was 27.7, 11.0 and 10.7%, respectively. Patients with paternal diabetes had a higher prevalence of hypertension (64.8 vs. 57.1%, P = 0.05) and lower LDL-cholesterol levels (115.12 ± 39.76 vs. 127.13 ± 46.53 mg/dl, P = 0.006) than patients with diabetes in the mother. Patients with familial diabetes were significantly younger (P < 0.001), with lower age at diabetes diagnosis (P < 0.001) than those without diabetic relatives. Patients with a diabetic parent had higher body mass index (BMI) (31.22 ± 5.87 vs. 30.67 ± 5.35 Kg/m<sup>2</sup>, P = 0.08), higher prevalence of dyslipidemia (49.8 vs. 44.6%, P = 0.06) and retinopathy (17.9 vs. 14.5%, P = 0.08) compared with patients with no diabetic relatives. No difference in the degree of metabolic control and the prevalence of chronic complications were observed.</p> <p>Conclusion</p> <p>The present study showed an excess maternal transmission of T2D in a sample of Greek diabetic patients. However, no different influence was found between maternal and paternal diabetes on the clinical characteristics of diabetic patients except for LDL-cholesterol levels and presence of hypertension. The presence of a family history of diabetes resulted to an early onset of the disease to the offspring.</p
Factors associated with knowledge about tuberculosis and attitudes of relatives of patients with the disease in Ribeirão Preto, São Paulo, Brazil
Mitochondrial Diabetes in Children: Seek and You Will Find It
Maternally Inherited Diabetes and Deafness (MIDD) is a rare form of diabetes due to defects in mitochondrial DNA (mtDNA). 3243 A>G is the mutation most frequently associated with this condition, but other mtDNA variants have been linked with a diabetic phenotype suggestive of MIDD. From 1989 to 2009, we clinically diagnosed mitochondrial diabetes in 11 diabetic children. Diagnosis was based on the presence of one or more of the following criteria: 1) maculopathy; 2) hearing impairment; 3) maternal heritability of diabetes/impaired fasting glucose and/or hearing impairment and/or maculopathy in three consecutive generations (or in two generations if 2 or 3 members of a family were affected). We sequenced the mtDNA in the 11 probands, in their mothers and in 80 controls. We identified 33 diabetes-suspected mutations, 1/33 was 3243A>G. Most patients (91%) and their mothers had mutations in complex I and/or IV of the respiratory chain. We measured the activity of these two enzymes and found that they were less active in mutated patients and their mothers than in the healthy control pool. The prevalence of hearing loss (36% vs 75–98%) and macular dystrophy (54% vs 86%) was lower in our mitochondrial diabetic adolescents than reported in adults. Moreover, we found a hitherto unknown association between mitochondrial diabetes and celiac disease. In conclusion, mitochondrial diabetes should be considered a complex syndrome with several phenotypic variants. Moreover, deafness is not an essential component of the disease in children. The whole mtDNA should be screened because the 3243A>G variant is not as frequent in children as in adults. In fact, 91% of our patients were mutated in the complex I and/or IV genes. The enzymatic assay may be a useful tool with which to confirm the pathogenic significance of detected variants
Surface Complexation Modeling in Variable Charge Soils: Charge Characterization by Potentiometric Titration
Mitochondrial Mutations in Adenoid Cystic Carcinoma of the Salivary Glands
Background: The MitoChip v2.0 resequencing array is an array-based technique allowing for accurate and complete sequencing of the mitochondrial genome. No studies have investigated mitochondrial mutation in salivary gland adenoid cystic carcinomas. Methodology: The entire mitochondrial genome of 22 salivary gland adenoid cystic carcinomas (ACC) of salivary glands and matched leukocyte DNA was sequenced to determine the frequency and distribution of mitochondrial mutations in ACC tumors. Principal Findings: Seventeen of 22 ACCs (77%) carried mitochondrial mutations, ranging in number from 1 to 37 mutations. A disproportionate number of mutations occurred in the D-loop. Twelve of 17 tumors (70.6%) carried mutations resulting in amino acid changes of translated proteins. Nine of 17 tumors (52.9%) with a mutation carried an amino acid changing mutation in the nicotinamide adenine dinucleotide dehydrogenase (NADH) complex. Conclusions/Significance: Mitochondrial mutation is frequent in salivary ACCs. The high incidence of amino acid changing mutations implicates alterations in aerobic respiration in ACC carcinogenesis. D-loop mutations are of unclear significance
The prevalence of chronic diabetic complications and metabolic syndrome is not associated with maternal type 2 diabetes
Mitochondrial physiology
As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery
Mitochondrial physiology
As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery
Conhecimento dos agentes comunitários de saúde sobre a tuberculose, suas medidas de controle e tratamento diretamente observado
- …
