381 research outputs found
Reducing complexity of multiagent systems with symmetry breaking: an application to opinion dynamics with polls
In this paper we investigate the possibility of reducing the complexity of a
system composed of a large number of interacting agents, whose dynamics feature
a symmetry breaking. We consider first order stochastic differential equations
describing the behavior of the system at the particle (i.e., Lagrangian) level
and we get its continuous (i.e., Eulerian) counterpart via a kinetic
description. However, the resulting continuous model alone fails to describe
adequately the evolution of the system, due to the loss of granularity which
prevents it from reproducing the symmetry breaking of the particle system. By
suitably coupling the two models we are able to reduce considerably the
necessary number of particles while still keeping the symmetry breaking and
some of its large-scale statistical properties. We describe such a multiscale
technique in the context of opinion dynamics, where the symmetry breaking is
induced by the results of some opinion polls reported by the media
Modeling self-organization in pedestrians and animal groups from macroscopic and microscopic viewpoints
This paper is concerned with mathematical modeling of intelligent systems,
such as human crowds and animal groups. In particular, the focus is on the
emergence of different self-organized patterns from non-locality and anisotropy
of the interactions among individuals. A mathematical technique by
time-evolving measures is introduced to deal with both macroscopic and
microscopic scales within a unified modeling framework. Then self-organization
issues are investigated and numerically reproduced at the proper scale,
according to the kind of agents under consideration.Comment: 24 pages, 13 figure
Multiscale modeling of granular flows with application to crowd dynamics
In this paper a new multiscale modeling technique is proposed. It relies on a
recently introduced measure-theoretic approach, which allows to manage the
microscopic and the macroscopic scale under a unique framework. In the
resulting coupled model the two scales coexist and share information. This
allows to perform numerical simulations in which the trajectories and the
density of the particles affect each other. Crowd dynamics is the motivating
application throughout the paper.Comment: 30 pages, 9 figure
Modeling rationality to control self-organization of crowds: An environmental approach
In this paper we propose a classification of crowd models in built
environments based on the assumed pedestrian ability to foresee the movements
of other walkers. At the same time, we introduce a new family of macroscopic
models, which make it possible to tune the degree of predictiveness (i.e.,
rationality) of the individuals. By means of these models we describe both the
natural behavior of pedestrians, i.e., their expected behavior according to
their real limited predictive ability, and a target behavior, i.e., a
particularly efficient behavior one would like them to assume (for, e.g.,
logistic or safety reasons). Then we tackle a challenging shape optimization
problem, which consists in controlling the environment in such a way that the
natural behavior is as close as possible to the target one, thereby inducing
pedestrians to behave more rationally than what they would naturally do. We
present numerical tests which elucidate the role of rational/predictive
abilities and show some promising results about the shape optimization problem
How can macroscopic models reveal self-organization in traffic flow?
In this paper we propose a new modeling technique for vehicular traffic flow,
designed for capturing at a macroscopic level some effects, due to the
microscopic granularity of the flow of cars, which would be lost with a purely
continuous approach. The starting point is a multiscale method for pedestrian
modeling, recently introduced in Cristiani et al., Multiscale Model. Simul.,
2011, in which measure-theoretic tools are used to manage the microscopic and
the macroscopic scales under a unique framework. In the resulting coupled model
the two scales coexist and share information, in the sense that the same system
is simultaneously described from both a discrete (microscopic) and a continuous
(macroscopic) perspective. This way it is possible to perform numerical
simulations in which the single trajectories and the average density of the
moving agents affect each other. Such a method is here revisited in order to
deal with multi-population traffic flow on networks. For illustrative purposes,
we focus on the simple case of the intersection of two roads. By exploiting one
of the main features of the multiscale method, namely its
dimension-independence, we treat one-dimensional roads and two-dimensional
junctions in a natural way, without referring to classical network theory.
Furthermore, thanks to the coupling between the microscopic and the macroscopic
scales, we model the continuous flow of cars without losing the right amount of
granularity, which characterizes the real physical system and triggers
self-organization effects, such as, for example, the oscillatory patterns
visible at jammed uncontrolled crossroads.Comment: 7 pages, 7 figure
Multiscale modeling of granular flows with application to crowd dynamics
In this paper a new multiscale modeling technique is proposed. It relies on a
recently introduced measure-theoretic approach, which allows to manage the
microscopic and the macroscopic scale under a unique framework. In the
resulting coupled model the two scales coexist and share information. This
allows to perform numerical simulations in which the trajectories and the
density of the particles affect each other. Crowd dynamics is the motivating
application throughout the paper.Comment: 30 pages, 9 figure
The dusty environment of Quasars. Far-IR properties of Optical Quasars
We present the ISO far-IR photometry of a complete sub-sample of optically
selected bright quasars belonging to two complete surveys selected through
multicolour (U,B,V,R,I) techniques. The ISOPHOT camera on board of the ISO
Satellite was used to target these quasars at wavelengths of 7.3, 11.5, 60, 100
and 160 micron. Almost two thirds of the objects were detected at least in one
ISOPHOT band. The detection rate is independent of the source redshift, very
likely due to the negative K-correction of the far-IR thermal emission. More
than a half of the optically selected QSOs show significant emission between 4
and 100 micron in the quasar rest-frame. These fluxes have a very likely
thermal origin, although in a few objects an additional contribution from a
non-thermal component is plausible in the long wavelength bands. In a
colour-colour diagram these objects span a wide range of properties from
AGN-dominated to ULIRG-like. The far-IR composite spectrum of the quasar
population presents a broad far-IR bump between 10 and 30 micron and a sharp
drop at wavelengths greater than 100 micron in the quasar restframe. The amount
of energy emitted in the far-IR, is on average a few times larger than that
emitted in the blue and the ratio L(FIR)/L(B) increases with the bolometric
luminosity. Objects with fainter blue magnitudes have larger ratios between the
far-IR (wavelengths > 60 micron) fluxes and the blue band flux, which is
attributed to extinction by dust around the central source. No relation between
the blue absolute magnitude and the dust colour temperature is seen, suggesting
that the dominant source of FIR energy could be linked to a concurrent
starburst rather than to gravitational energy produced by the central engine.Comment: Astronomical Journal, in pres
Multicolor observations of the Hubble Deep Field South
We present a deep multicolor (UBVIJsHKs) catalog of galaxies in the HDF-S,
based on observations obtained with the HST WFPC2 in 1998 and VLT-ISAAC in
1999. The photometric procedures were tuned to derive a catalog optimized for
the estimation of photometric redshifts. In particular we adopted a
``conservative'' detection threshold which resulted in a list of 1611 objects.
The behavior of the observed source counts is in general agreement with the
result of Casertano et al. (2000) in the HDF-S and Williams et al. (1996) in
the HDF-N, while the corresponding counts in the HDF-N provided by
Fernandez-Soto et al. (1999) are systematically lower by a factor 1.5 beyond
I_AB=26. After correcting for the incompleteness of the source counts, the
object surface density at I_AB<27.5 is estimated to be 220 per square arcmin,
providing an estimate of the Extragalactic Background Light in the I band
consistent with the work of Madau & Pozzetti(2000). The comparison between the
median V-I color in the HDF-North and South shows a significant difference
around I_AB~26, possibly due to the presence of large scale structure at z~1 in
the HDF-N. High-z galaxy candidates (90 U dropout and 17 B dropout) were
selected by means of color diagrams, down to a magnitude I_AB=27, with a
surface density of (21+-1) and (3.9+-0.9) per square arcmin, respectively. 11
EROs (with (I-K)_AB>2.7) were selected down to K_AB=24, plus 3 objects whose
upper limit to the Ks flux is still compatible with the selection criterion.
The corresponding surface density of EROs is (2.5+-0.8) per sq.arcmin
((3.2+-0.9) per sq.arcmin if we include the three Ks upper limits). They show a
remarkably non-uniform spatial distribution and are classified with roughly
equal fractions in the categories of elliptical and starburst galaxies.Comment: 36 pages Latex, with 12 PostScript figures. Accepted for publication
in Astronomical Journa
Early evidence of stone tool use in bone working activities at Qesem Cave, Israel
For a long while, the controversy surrounding several bone tools coming from pre-Upper Palaeolithic contexts favoured the view of Homo sapiens as the only species of the genus Homo capable of modifying animal bones into specialised tools. However, evidence such as South African Early Stone Age modified bones, European Lower Palaeolithic flaked bone tools, along with Middle and Late Pleistocene bone retouchers, led to a re-evaluation of the conception of Homo sapiens as the exclusive manufacturer of specialised bone tools. The evidence presented herein include use wear and bone residues identified on two flint scrapers as well as a sawing mark on a fallow deer tibia, not associated with butchering activities. Dated to more than 300 kya, the evidence here presented is among the earliest related to tool-assisted bone working intended for non-dietary purposes, and contributes to the debate over the recognition of bone working as a much older behaviour than previously thought. The results of this study come from the application of a combined methodological approach, comprising use wear analysis, residue analysis, and taphonomy. This approach allowed for the retrieval of both direct and indirect evidence of tool-assisted bone working, at the Lower Palaeolithic site of Qesem Cave (Israel)
- …
