381 research outputs found

    Reducing complexity of multiagent systems with symmetry breaking: an application to opinion dynamics with polls

    Get PDF
    In this paper we investigate the possibility of reducing the complexity of a system composed of a large number of interacting agents, whose dynamics feature a symmetry breaking. We consider first order stochastic differential equations describing the behavior of the system at the particle (i.e., Lagrangian) level and we get its continuous (i.e., Eulerian) counterpart via a kinetic description. However, the resulting continuous model alone fails to describe adequately the evolution of the system, due to the loss of granularity which prevents it from reproducing the symmetry breaking of the particle system. By suitably coupling the two models we are able to reduce considerably the necessary number of particles while still keeping the symmetry breaking and some of its large-scale statistical properties. We describe such a multiscale technique in the context of opinion dynamics, where the symmetry breaking is induced by the results of some opinion polls reported by the media

    Modeling self-organization in pedestrians and animal groups from macroscopic and microscopic viewpoints

    Full text link
    This paper is concerned with mathematical modeling of intelligent systems, such as human crowds and animal groups. In particular, the focus is on the emergence of different self-organized patterns from non-locality and anisotropy of the interactions among individuals. A mathematical technique by time-evolving measures is introduced to deal with both macroscopic and microscopic scales within a unified modeling framework. Then self-organization issues are investigated and numerically reproduced at the proper scale, according to the kind of agents under consideration.Comment: 24 pages, 13 figure

    Multiscale modeling of granular flows with application to crowd dynamics

    Full text link
    In this paper a new multiscale modeling technique is proposed. It relies on a recently introduced measure-theoretic approach, which allows to manage the microscopic and the macroscopic scale under a unique framework. In the resulting coupled model the two scales coexist and share information. This allows to perform numerical simulations in which the trajectories and the density of the particles affect each other. Crowd dynamics is the motivating application throughout the paper.Comment: 30 pages, 9 figure

    Modeling rationality to control self-organization of crowds: An environmental approach

    Full text link
    In this paper we propose a classification of crowd models in built environments based on the assumed pedestrian ability to foresee the movements of other walkers. At the same time, we introduce a new family of macroscopic models, which make it possible to tune the degree of predictiveness (i.e., rationality) of the individuals. By means of these models we describe both the natural behavior of pedestrians, i.e., their expected behavior according to their real limited predictive ability, and a target behavior, i.e., a particularly efficient behavior one would like them to assume (for, e.g., logistic or safety reasons). Then we tackle a challenging shape optimization problem, which consists in controlling the environment in such a way that the natural behavior is as close as possible to the target one, thereby inducing pedestrians to behave more rationally than what they would naturally do. We present numerical tests which elucidate the role of rational/predictive abilities and show some promising results about the shape optimization problem

    How can macroscopic models reveal self-organization in traffic flow?

    Full text link
    In this paper we propose a new modeling technique for vehicular traffic flow, designed for capturing at a macroscopic level some effects, due to the microscopic granularity of the flow of cars, which would be lost with a purely continuous approach. The starting point is a multiscale method for pedestrian modeling, recently introduced in Cristiani et al., Multiscale Model. Simul., 2011, in which measure-theoretic tools are used to manage the microscopic and the macroscopic scales under a unique framework. In the resulting coupled model the two scales coexist and share information, in the sense that the same system is simultaneously described from both a discrete (microscopic) and a continuous (macroscopic) perspective. This way it is possible to perform numerical simulations in which the single trajectories and the average density of the moving agents affect each other. Such a method is here revisited in order to deal with multi-population traffic flow on networks. For illustrative purposes, we focus on the simple case of the intersection of two roads. By exploiting one of the main features of the multiscale method, namely its dimension-independence, we treat one-dimensional roads and two-dimensional junctions in a natural way, without referring to classical network theory. Furthermore, thanks to the coupling between the microscopic and the macroscopic scales, we model the continuous flow of cars without losing the right amount of granularity, which characterizes the real physical system and triggers self-organization effects, such as, for example, the oscillatory patterns visible at jammed uncontrolled crossroads.Comment: 7 pages, 7 figure

    Multiscale modeling of granular flows with application to crowd dynamics

    Full text link
    In this paper a new multiscale modeling technique is proposed. It relies on a recently introduced measure-theoretic approach, which allows to manage the microscopic and the macroscopic scale under a unique framework. In the resulting coupled model the two scales coexist and share information. This allows to perform numerical simulations in which the trajectories and the density of the particles affect each other. Crowd dynamics is the motivating application throughout the paper.Comment: 30 pages, 9 figure

    The dusty environment of Quasars. Far-IR properties of Optical Quasars

    Get PDF
    We present the ISO far-IR photometry of a complete sub-sample of optically selected bright quasars belonging to two complete surveys selected through multicolour (U,B,V,R,I) techniques. The ISOPHOT camera on board of the ISO Satellite was used to target these quasars at wavelengths of 7.3, 11.5, 60, 100 and 160 micron. Almost two thirds of the objects were detected at least in one ISOPHOT band. The detection rate is independent of the source redshift, very likely due to the negative K-correction of the far-IR thermal emission. More than a half of the optically selected QSOs show significant emission between 4 and 100 micron in the quasar rest-frame. These fluxes have a very likely thermal origin, although in a few objects an additional contribution from a non-thermal component is plausible in the long wavelength bands. In a colour-colour diagram these objects span a wide range of properties from AGN-dominated to ULIRG-like. The far-IR composite spectrum of the quasar population presents a broad far-IR bump between 10 and 30 micron and a sharp drop at wavelengths greater than 100 micron in the quasar restframe. The amount of energy emitted in the far-IR, is on average a few times larger than that emitted in the blue and the ratio L(FIR)/L(B) increases with the bolometric luminosity. Objects with fainter blue magnitudes have larger ratios between the far-IR (wavelengths > 60 micron) fluxes and the blue band flux, which is attributed to extinction by dust around the central source. No relation between the blue absolute magnitude and the dust colour temperature is seen, suggesting that the dominant source of FIR energy could be linked to a concurrent starburst rather than to gravitational energy produced by the central engine.Comment: Astronomical Journal, in pres

    Multicolor observations of the Hubble Deep Field South

    Get PDF
    We present a deep multicolor (UBVIJsHKs) catalog of galaxies in the HDF-S, based on observations obtained with the HST WFPC2 in 1998 and VLT-ISAAC in 1999. The photometric procedures were tuned to derive a catalog optimized for the estimation of photometric redshifts. In particular we adopted a ``conservative'' detection threshold which resulted in a list of 1611 objects. The behavior of the observed source counts is in general agreement with the result of Casertano et al. (2000) in the HDF-S and Williams et al. (1996) in the HDF-N, while the corresponding counts in the HDF-N provided by Fernandez-Soto et al. (1999) are systematically lower by a factor 1.5 beyond I_AB=26. After correcting for the incompleteness of the source counts, the object surface density at I_AB<27.5 is estimated to be 220 per square arcmin, providing an estimate of the Extragalactic Background Light in the I band consistent with the work of Madau & Pozzetti(2000). The comparison between the median V-I color in the HDF-North and South shows a significant difference around I_AB~26, possibly due to the presence of large scale structure at z~1 in the HDF-N. High-z galaxy candidates (90 U dropout and 17 B dropout) were selected by means of color diagrams, down to a magnitude I_AB=27, with a surface density of (21+-1) and (3.9+-0.9) per square arcmin, respectively. 11 EROs (with (I-K)_AB>2.7) were selected down to K_AB=24, plus 3 objects whose upper limit to the Ks flux is still compatible with the selection criterion. The corresponding surface density of EROs is (2.5+-0.8) per sq.arcmin ((3.2+-0.9) per sq.arcmin if we include the three Ks upper limits). They show a remarkably non-uniform spatial distribution and are classified with roughly equal fractions in the categories of elliptical and starburst galaxies.Comment: 36 pages Latex, with 12 PostScript figures. Accepted for publication in Astronomical Journa

    Early evidence of stone tool use in bone working activities at Qesem Cave, Israel

    Get PDF
    For a long while, the controversy surrounding several bone tools coming from pre-Upper Palaeolithic contexts favoured the view of Homo sapiens as the only species of the genus Homo capable of modifying animal bones into specialised tools. However, evidence such as South African Early Stone Age modified bones, European Lower Palaeolithic flaked bone tools, along with Middle and Late Pleistocene bone retouchers, led to a re-evaluation of the conception of Homo sapiens as the exclusive manufacturer of specialised bone tools. The evidence presented herein include use wear and bone residues identified on two flint scrapers as well as a sawing mark on a fallow deer tibia, not associated with butchering activities. Dated to more than 300 kya, the evidence here presented is among the earliest related to tool-assisted bone working intended for non-dietary purposes, and contributes to the debate over the recognition of bone working as a much older behaviour than previously thought. The results of this study come from the application of a combined methodological approach, comprising use wear analysis, residue analysis, and taphonomy. This approach allowed for the retrieval of both direct and indirect evidence of tool-assisted bone working, at the Lower Palaeolithic site of Qesem Cave (Israel)
    corecore