426 research outputs found

    Solid-State Microwave Electronics

    Get PDF
    Contains reports on three research projects.National Aeronautics and Space Administration (Grant NGR-22-009-163

    Speech Communication

    Get PDF
    Contains reports on three research projects.U. S. Air Force Cambridge Research Laboratories under Contract F19628-69-C-0044National Institutes of Health (Grant 5 RO1 NS04332-09)M.I.T. Lincoln Laboratory Purchase Order CC-57

    Type-IV DCT, DST, and MDCT algorithms with reduced numbers of arithmetic operations

    Full text link
    We present algorithms for the type-IV discrete cosine transform (DCT-IV) and discrete sine transform (DST-IV), as well as for the modified discrete cosine transform (MDCT) and its inverse, that achieve a lower count of real multiplications and additions than previously published algorithms, without sacrificing numerical accuracy. Asymptotically, the operation count is reduced from ~2NlogN to ~(17/9)NlogN for a power-of-two transform size N, and the exact count is strictly lowered for all N > 4. These results are derived by considering the DCT to be a special case of a DFT of length 8N, with certain symmetries, and then pruning redundant operations from a recent improved fast Fourier transform algorithm (based on a recursive rescaling of the conjugate-pair split radix algorithm). The improved algorithms for DST-IV and MDCT follow immediately from the improved count for the DCT-IV.Comment: 11 page

    Return to Zumba: or My Daughter\u27s Wedding is Making Me Shake

    Get PDF
    Nobody puts Baby in a corner. Me, though? I’m good in a corner. In fact, when dancing is involved, people feel safer if I’m tucked away somewhere. Or better yet, cordoned off

    Type-II/III DCT/DST algorithms with reduced number of arithmetic operations

    Full text link
    We present algorithms for the discrete cosine transform (DCT) and discrete sine transform (DST), of types II and III, that achieve a lower count of real multiplications and additions than previously published algorithms, without sacrificing numerical accuracy. Asymptotically, the operation count is reduced from ~ 2N log_2 N to ~ (17/9) N log_2 N for a power-of-two transform size N. Furthermore, we show that a further N multiplications may be saved by a certain rescaling of the inputs or outputs, generalizing a well-known technique for N=8 by Arai et al. These results are derived by considering the DCT to be a special case of a DFT of length 4N, with certain symmetries, and then pruning redundant operations from a recent improved fast Fourier transform algorithm (based on a recursive rescaling of the conjugate-pair split radix algorithm). The improved algorithms for DCT-III, DST-II, and DST-III follow immediately from the improved count for the DCT-II.Comment: 9 page

    Digital Signal Processing

    Get PDF
    Contains research objectives and summary of research.National Science Foundation (Grant GK-31353)U. S. Navy Office of Naval Research (Contract N00014-67-A-0204-0064

    The Precision Array for Probing the Epoch of Reionization: 8 Station Results

    Full text link
    We are developing the Precision Array for Probing the Epoch of Reionization (PAPER) to detect 21cm emission from the early Universe, when the first stars and galaxies were forming. We describe the overall experiment strategy and architecture and summarize two PAPER deployments: a 4-antenna array in the low-RFI environment of Western Australia and an 8-antenna array at our prototyping site in Green Bank, WV. From these activities we report on system performance, including primary beam model verification, dependence of system gain on ambient temperature, measurements of receiver and overall system temperatures, and characterization of the RFI environment at each deployment site. We present an all-sky map synthesized between 139 MHz and 174 MHz using data from both arrays that reaches down to 80 mJy (4.9 K, for a beam size of 2.15e-5 steradians at 154 MHz), with a 10 mJy (620 mK) thermal noise level that indicates what would be achievable with better foreground subtraction. We calculate angular power spectra (CC_\ell) in a cold patch and determine them to be dominated by point sources, but with contributions from galactic synchrotron emission at lower radio frequencies and angular wavemodes. Although the cosmic variance of foregrounds dominates errors in these power spectra, we measure a thermal noise level of 310 mK at =100\ell=100 for a 1.46-MHz band centered at 164.5 MHz. This sensitivity level is approximately three orders of magnitude in temperature above the level of the fluctuations in 21cm emission associated with reionization.Comment: 13 pages, 14 figures, submitted to AJ. Revision 2 corrects a scaling error in the x axis of Fig. 12 that lowers the calculated power spectrum temperatur

    Bayesian inference on compact binary inspiral gravitational radiation signals in interferometric data

    Full text link
    Presented is a description of a Markov chain Monte Carlo (MCMC) parameter estimation routine for use with interferometric gravitational radiational data in searches for binary neutron star inspiral signals. Five parameters associated with the inspiral can be estimated, and summary statistics are produced. Advanced MCMC methods were implemented, including importance resampling and prior distributions based on detection probability, in order to increase the efficiency of the code. An example is presented from an application using realistic, albeit fictitious, data.Comment: submitted to Classical and Quantum Gravity. 14 pages, 5 figure

    Solid-State Microwave Electronics

    Get PDF
    Contains reports on status of research and nine research projects.National Aeronautics and Space Administration (Grant NGR-22-009-163
    corecore