149 research outputs found
Real-time optical manipulation of cardiac conduction in intact hearts
Optogenetics has provided new insights in cardiovascular research, leading to new methods for cardiac pacing, resynchronization therapy and cardioversion. Although these interventions have clearly demonstrated the feasibility of cardiac manipulation, current optical stimulation strategies do not take into account cardiac wave dynamics in real time. Here, we developed an all‐optical platform complemented by integrated, newly developed software to monitor and control electrical activity in intact mouse hearts. The system combined a wide‐field mesoscope with a digital projector for optogenetic activation. Cardiac functionality could be manipulated either in free‐run mode with submillisecond temporal resolution or in a closed‐loop fashion: a tailored hardware and software platform allowed real‐time intervention capable of reacting within 2 ms. The methodology was applied to restore normal electrical activity after atrioventricular block, by triggering the ventricle in response to optically mapped atrial activity with appropriate timing. Real‐time intraventricular manipulation of the propagating electrical wavefront was also demonstrated, opening the prospect for real‐time resynchronization therapy and cardiac defibrillation. Furthermore, the closed‐loop approach was applied to simulate a re‐entrant circuit across the ventricle demonstrating the capability of our system to manipulate heart conduction with high versatility even in arrhythmogenic conditions. The development of this innovative optical methodology provides the first proof‐of‐concept that a real‐time optically based stimulation can control cardiac rhythm in normal and abnormal conditions, promising a new approach for the investigation of the (patho)physiology of the heart
Cardiac sarcomere mechanics in health and disease
The sarcomere is the fundamental structural and functional unit of striated muscle and is directly responsible for most of its mechanical properties. The sarcomere generates active or contractile forces and determines the passive or elastic properties of striated muscle. In the heart, mutations in sarcomeric proteins are responsible for the majority of genetically inherited cardiomyopathies. Here, we review the major determinants of cardiac sarcomere mechanics including the key structural components that contribute to active and passive tension. We dissect the molecular and structural basis of active force generation, including sarcomere composition, structure, activation, and relaxation. We then explore the giant sarcomere-resident protein titin, the major contributor to cardiac passive tension. We discuss sarcomere dynamics exemplified by the regulation of titin-based stiffness and the titin life cycle. Finally, we provide an overview of therapeutic strategies that target the sarcomere to improve cardiac contraction and filling
Editorial: The Role of Calcium Handling in Heart Failure and Heart Failure Associated Arrhythmias
3D imaging and morphometry of the heart capillary system in spontaneously hypertensive rats and normotensive controls
Systemic arterial hypertension is a highly prevalent chronic disease associated with hypertensive cardiomyopathy. One important feature of this condition is remodelling of intramural small coronary arteries and arterioles. Here, we investigated the implications of this remodelling in the downstream vascular organization, in particular at the capillary level. We used Spontaneously Hypertensive Rats (SHR) exhibiting many features of the human hypertensive cardiomyopathy. We generated 3D high-resolution mesoscopic reconstructions of the entire network of SHR hearts combining gel-based fluorescent labelling of coronaries with a CLARITY-based tissue clearing protocol. We performed morphometric quantification of the capillary network over time to assess capillary diameter, linear density, and angular dispersion. In SHRs, we found significant remodelling of the capillary network density and dispersion. SHR capillary density is increased in both ventricles and at all ages, including before the onset of systemic hypertension. This result suggests that remodelling occurs independently from the onset of systemic hypertension and left ventricular hypertrophy. On the contrary, capillary angular dispersion increases with time in SHR. Consistently, our multicolor imaging underlined a strong correlation between vascular dispersion and cellular disarray. Together our data show that 3D high-resolution reconstruction of the capillary network can unveil anatomic signatures in both physiological and pathological cardiac conditions, thus offering a reliable method for integrated quantitative analyses
T-Tubular Electrical Defects Contribute to Blunted β-Adrenergic Response in Heart Failure.
Alterations of the β-adrenergic signalling, structural remodelling, and electrical failure of T-tubules are hallmarks of heart failure (HF). Here, we assess the effect of β-adrenoceptor activation on local Ca2+ release in electrically coupled and uncoupled T-tubules in ventricular myocytes from HF rats. We employ an ultrafast random access multi-photon (RAMP) microscope to simultaneously record action potentials and Ca2+ transients from multiple T-tubules in ventricular cardiomyocytes from a HF rat model of coronary ligation compared to sham-operated rats as a control. We confirmed that β-adrenergic stimulation increases the frequency of Ca2+ sparks, reduces Ca2+ transient variability, and hastens the decay of Ca2+ transients: all these effects are similarly exerted by β-adrenergic stimulation in control and HF cardiomyocytes. Conversely, β-adrenergic stimulation in HF cells accelerates a Ca2+ rise exclusively in the proximity of T-tubules that regularly conduct the action potential. The delayed Ca2+ rise found at T-tubules that fail to conduct the action potential is instead not affected by β-adrenergic signalling. Taken together, these findings indicate that HF cells globally respond to β-adrenergic stimulation, except at T-tubules that fail to conduct action potentials, where the blunted effect of the β-adrenergic signalling may be directly caused by the lack of electrical activity
Optogenetic confirmation of transverse‐tubular membrane excitability in intact cardiac myocytes
Optogenetics design of mechanistically-based stimulation patterns for cardiac defibrillation
Current rescue therapies for life-threatening arrhythmias ignore the pathological electro-anatomical substrate and base their efficacy on a generalized electrical discharge. Here, we developed an all-optical platform to examine less invasive defibrillation strategies. An ultrafast wide-field macroscope was developed to optically map action potential propagation with a red-shifted voltage sensitive dye in whole mouse hearts. The macroscope was implemented with a random-access scanning head capable of drawing arbitrarily-chosen stimulation patterns with sub-millisecond temporal resolution allowing precise epicardial activation of Channelrhodopsin2 (ChR2). We employed this optical system in the setting of ventricular tachycardia to optimize mechanistic, multi-barrier cardioversion/defibrillation patterns. Multiple regions of conduction block were created with a very high cardioversion efficiency but with lower energy requirements as compared to whole ventricle interventions to interrupt arrhythmias. This work demonstrates that defibrillation energies can be substantially reduced by applying discrete stimulation patterns and promotes the progress of current anti-arrhythmic strategies
- …
