1,226 research outputs found
Magnetic substructure in the northern Fermi Bubble revealed by polarized WMAP emission
We report a correspondence between giant, polarized microwave structures
emerging north from the Galactic plane near the Galactic center and a number of
GeV gamma-ray features, including the eastern edge of the recently-discovered
northern Fermi Bubble. The polarized microwave features also correspond to
structures seen in the all-sky 408 MHz total intensity data, including the
Galactic center spur. The magnetic field structure revealed by the polarization
data at 23 GHz suggests that neither the emission coincident with the Bubble
edge nor the Galactic center spur are likely to be features of the local ISM.
On the basis of the observed morphological correspondences, similar inferred
spectra, and the similar energetics of all sources, we suggest a direct
connection between the Galactic center spur and the northern Fermi Bubble.Comment: Accepted for publication in The Astrophysical Journal Letters after
minor change
Where are the shareholders’ mansions? CEOs’ home purchases, stock sales, and subsequent company performance
We study real estate purchases by major company CEOs, compiling a database of the
principal residences of nearly every top executive in the Standard & Poor’s 500 index. When a CEO buys real estate, future company performance is inversely related to the CEO’s liquidation of company shares and options for financing the transaction. We also find that, regardless of the source of finance, future company performance deteriorates when CEOs acquire extremely large or costly mansions and estates. We therefore interpret large home acquisitions as signals of CEO
entrenchment. Our research also provides useful insights for calibrating utility based models of executive compensation and for understanding patterns of Veblenian conspicuous consumption
Wild at Heart:-The Particle Astrophysics of the Galactic Centre
We treat of the high-energy astrophysics of the inner ~200 pc of the Galaxy.
Our modelling of this region shows that the supernovae exploding here every few
thousand years inject enough power to i) sustain the steady-state, in situ
population of cosmic rays (CRs) required to generate the region's non-thermal
radio and TeV {\gamma}-ray emis-sion; ii) drive a powerful wind that advects
non-thermal particles out of the inner GC; iii) supply the low-energy CRs whose
Coulombic collisions sustain the temperature and ionization rate of the
anomalously warm, envelope H2 detected throughout the Cen-tral Molecular Zone;
iv) accelerate the primary electrons which provide the extended, non-thermal
radio emission seen over ~150 pc scales above and below the plane (the Galactic
centre lobe); and v) accelerate the primary protons and heavier ions which,
advected to very large scales (up to ~10 kpc), generate the recently-identified
WMAP haze and corresponding Fermi haze/bubbles. Our modelling bounds the
average magnetic field amplitude in the inner few degrees of the Galaxy to the
range 60 < B/microG < 400 (at 2 sigma confidence) and shows that even TeV CRs
likely do not have time to penetrate into the cores of the region's dense
molecular clouds before the wind removes them from the region. This latter
finding apparently disfavours scenarios in which CRs - in this star-burst-like
environment - act to substantially modify the conditions of star-formation. We
speculate that the wind we identify plays a crucial role in advecting
low-energy positrons from the Galactic nucleus into the bulge, thereby
explaining the extended morphology of the 511 keV line emission. (abridged)Comment: One figure corrected. Accepted for publication in MNRAS. 29 pages, 14
figure
Strong Evidence that the Galactic Bulge is Shining in Gamma Rays
There is growing evidence that the Galactic Center Excess identified in the
-LAT gamma-ray data arises from a population of faint
astrophysical sources. We provide compelling supporting evidence by showing
that the morphology of the excess traces the stellar over-density of the
Galactic bulge. By adopting a template of the bulge stars obtained from a
triaxial 3D fit to the diffuse near-infrared emission, we show that it is
detected at high significance. The significance deteriorates when either the
position or the orientation of the template is artificially shifted, supporting
the correlation of the gamma-ray data with the Galactic bulge. In deriving
these results, we have used more sophisticated templates at low-latitudes for
the bubbles compared to previous work and the
three-dimensional Inverse Compton (IC) maps recently released by the team. Our results provide strong constraints on Millisecond Pulsar
(MSP) formation scenarios proposed to explain the excess. We find that an
scenario, in which some of the relevant binaries
are and the rest are formed , is
preferred over a primordial-only formation scenario at confidence
level. Our detailed morphological analysis also disfavors models of the
disrupted globular clusters scenario that predict a spherically symmetric
distribution of MSPs in the Galactic bulge. For the first time, we report
evidence of a high energy tail in the nuclear bulge spectrum that could be the
result of IC emission from electrons and positrons injected by a population of
MSPs and star formation activity from the same site.Comment: 21 pages, 13 figures, V2: Minor changes to match submitted version,
V3: matches JCAP published versio
Superior Real Estate Investment Performance: Enigma or Illusion? A Critical Review of the Literature
[Excerpt] The purpose of this paper is to critique the existing empirical evidence on the investment performance of real estate relative to alternative asset categories. The key issue which guides this review of the investment performance literature is whether abnormal real estate returns are merely an illusion which arises from the shortcomings associated with various real estate performance studies or are the result of an omission of more fundamental factors. We suggest that any superior return is a short-run phenomenon, because, according to capital market theory, all assets should exhibit similar risk and return characteristics in the long run. If real estate continues to possess superior performance in the long run, then this implies that fundamental factors have been omitted from the real estate pricing model. Moreover, we will propose that a world in which the capital asset pricing model holds might be compatible with the existing evidence, because most of the prior studies have focused on total risk rather than on systematic risk. l Consequently, all assets can plot on the security market line in equilibrium, given a CAPM world, regardless of whether one asset (portfolio) such as real estate dominates another asset (portfolio) such as stocks from a mean-variance perspective
Radio Synchrotron Emission from Secondary Leptons in the Vicinity of Sgr A*
A point-like source of ~TeV gamma-rays has recently been seen towards the
Galactic center by HESS and other air Cerenkov telescopes. In recent work
(Ballantyne et al. 2007), we demonstrated that these gamma-rays can be
attributed to high-energy protons that (i) are accelerated close to the event
horizon of the central black hole, Sgr A*, (ii) diffuse out to ~pc scales, and
(iii) finally interact to produce gamma-rays. The same hadronic collision
processes will necessarily lead to the creation of electrons and positrons.
Here we calculate the synchrotron emissivity of these secondary leptons in the
same magnetic field configuration through which the initiating protons have
been propagated in our model. We compare this emission with the observed ~GHz
radio spectrum of the inner few pc region which we have assembled from archival
data and new measurements we have made with the Australia Telescope Compact
Array. We find that our model predicts secondary synchrotron emission with a
steep slope consistent with the observations but with an overall normalization
that is too large by a factor of ~ 2. If we further constrain our theoretical
gamma-ray curve to obey the implicit EGRET upper limit on emission from this
region we predict radio emission that is consistent with observations, i.e.,
the hadronic model of gamma ray emission can, simultaneously and without
fine-tuning, also explain essentially all the diffuse radio emission detected
from the inner few pc of the Galaxy.Comment: 11 pages, 2 figures. Two references missing from published version
added and acknowledgements extende
Hydrodynamic Coupling of Two Brownian Spheres to a Planar Surface
We describe direct imaging measurements of the collective and relative
diffusion of two colloidal spheres near a flat plate. The bounding surface
modifies the spheres' dynamics, even at separations of tens of radii. This
behavior is captured by a stokeslet analysis of fluid flow driven by the
spheres' and wall's no-slip boundary conditions. In particular, this analysis
reveals surprising asymmetry in the normal modes for pair diffusion near a flat
surface.Comment: 4 pages, 4 figure
Quantifying non-star formation associated 8um dust emission in NGC 628
Combining Ha and IRAC images of the nearby spiral galaxy NGC 628, we find
that between 30-43% of its 8um dust emission is not related to recent star
formation. Contributions from dust heated by young stars are separated by
identifying HII regions in the Ha map and using these areas as a mask to
determine the 8um dust emission that must be due to heating by older stars.
Corrections are made for sub-detection-threshold HII regions, photons escaping
from HII regions and for young stars not directly associated to HII regions
(i.e. 10-100 Myr old stars). A simple model confirms this amount of 8um
emission can be expected given dust and PAH absorption cross-sections, a
realistic star-formation history, and the observed optical extinction values. A
Fourier power spectrum analysis indicates that the 8um dust emission is more
diffuse than the Ha emission (and similar to observed HI), supporting our
analysis that much of the 8um-emitting dust is heated by older stars. The 8um
dust-to-Ha emission ratio declines with galactocentric radius both within and
outside of HII regions, probably due to a radial increase in disk transparency.
In the course of this work, we have also found that intrinsic diffuse Ha
fractions may be lower than previously thought in galaxies, if the differential
extinction between HII regions and diffuse regions is taken into account.Comment: 14 pages, 11 figures, accepted in Ap
- …
