641 research outputs found

    Phantoms of the forest: legacy risk effects of a regionally extinct large carnivore

    Get PDF
    The increased abundance of large carnivores in Europe is a conservation success, but the impact on the behavior and population dynamics of prey species is generally unknown. In Europe, the recolonization of large carnivores often occurs in areas where humans have greatly modified the landscape through forestry or agriculture. Currently, we poorly understand the effects of recolonizing large carnivores on extant prey species in anthropogenic landscapes. Here, we investigated if ungulate prey species showed innate responses to the scent of a regionally exterminated but native large carnivore, and whether the responses were affected by human-induced habitat openness. We experimentally introduced brown bear Ursus arctos scent to artificial feeding sites and used camera traps to document the responses of three sympatric ungulate species. In addition to controls without scent, reindeer scent Rangifer tarandus was used as a noncarnivore, novel control scent. Fallow deer Dama dama strongly avoided areas with bear scent. In the presence of bear scent, all ungulate species generally used open sites more than closed sites, whereas the opposite was observed at sites with reindeer scent or without scent. The opening of forest habitat by human practices, such as forestry and agriculture, creates a larger gradient in habitat openness than available in relatively unaffected closed forest systems, which may create opportunities for prey to alter their habitat selection and reduce predation risk in human-modified systems that do not exist in more natural forest systems. Increased knowledge about antipredator responses in areas subjected to anthropogenic change is important because these responses may affect prey population dynamics, lower trophic levels, and attitudes toward large carnivores. These aspects may be of particular relevance in the light of the increasing wildlife populations across much of Europe

    Tree cover and its heterogeneity in natural ecosystems is linked to large herbivore biomass globally

    Get PDF
    Addressing intertwined crises of climate change and biodiversity loss is a pressing global challenge, with trees playing pivotal roles in promoting carbon sequestration and habitat diversity. However, there is a distinct knowledge gap concerning the global drivers shaping tree cover and its heterogeneity, particularly the roles and relative importance of large herbivores and fire compared to climatic and topo-edaphic conditions. Here, we deploy satellite observations of strictly protected areas worldwide to reveal that in regions where vegetation may be in disequilibrium with climate, high biomass of large herbivores, especially browsers, is inversely related to tree cover but positively associated with its spatial heterogeneity. Conversely, fire reduces both tree cover and heterogeneity. These results suggest that top-down megafauna effects on landscape-scale vegetation openness and heterogeneity manifest worldwide. Our finding supports the need to consider megafauna, particularly large herbivores, in ecosystem effects on climate change mitigation and conservation and restoration efforts through trophic rewilding

    Grassland albedo as a nature-based climate prospect: the role of growth form and grazing

    Get PDF
    Nature-based solutions for mitigating climate change focus largely on land management to reduce carbon emissions and enhance carbon sequestration. Tree planting, commonly advocated for carbon offset, threatens grassland biodiversity and may induce positive radiative forcing (warming) by lowering albedo. Before making decisions about land-use changes in grasslands, an understanding of the fine-scale albedo of grassy versus woody vegetation is needed. Existing satellite-based albedo products offer global coverage with temporally fine, but spatially coarse, resolution, whereas fine-scale in situ grassland albedo data are sparse. We examined the hypotheses that albedo varies seasonally between grass type patches, between shrub and grass patches, and with grazing at the patch scale. Using a tripod-mounted albedometer, we quantified albedo of seven distinct grassland patches in South Africa's eastern Karoo during early and late dormancy and growing seasons. Patches included intensely-grazed grazing lawn ( Cynodon dactylon), grazed and less-grazed red tussock grass ( Themeda triandra), grazed and less-grazed white tussock grass ( Eragrostis lehmanniana), shrub ( Pentzia incana) encroached grass, and bare ground. Season influenced albedo in all patches and, additionally, we found strong differences for the same period between years due to varying rainfall and temperature patterns. For grass-dominated patches, albedo differences were most pronounced during early dormancy, likely due to an effect of grass inflorescences. Albedo of intensely-grazed grazing lawns was consistently higher than other patches, except during early dormancy when white tussock grass albedo was equally high. We found no albedo difference between grazed and less-grazed tussock patches of either red or white grass. Shrub-encroached patches exhibited consistently lower albedo than other patches. Our findings underscore the nuanced relationship between grassland patches and albedo, with shrub encroachment, proposed afforestation, and certain grasses possibly increasing warming potential through reduced albedo. As climate initiatives extend into grasslands, understanding these patterns is essential for climate change mitigation and grassland conservation

    Wilder rangelands as a natural climate opportunity: Linking climate action to biodiversity conservation and social transformation

    Get PDF
    Rangelands face threats from climate and land-use change, including inappropriate climate change mitigation initiatives such as tree planting in grassy ecosystems. The marginalization and impoverishment of rangeland communities and their indigenous knowledge systems, and the loss of biodiversity and ecosystem services, are additional major challenges. To address these issues, we propose the wilder rangelands integrated framework, co-developed by South African and European scientists from diverse disciplines, as an opportunity to address the climate, livelihood, and biodiversity challenges in the world's rangelands. More specifically, we present a Theory of Change to guide the design, monitoring, and evaluation of wilder rangelands. Through this, we aim to promote rangeland restoration, where local communities collaborate with regional and international actors to co-create new rangeland use models that simultaneously mitigate the impacts of climate change, restore biodiversity, and improve both ecosystem functioning and livelihoods

    Informing the Grazing Debate With Empirical Data on Black Wildebeest (Connochaetes gnou) Patch Use

    Get PDF
    High -density short -duration grazing (SDG) is widely suggested to increase productivity. Among various SDG practices, the most widespread and popular, "holistic grazing," claims to mimic the movement patterns of wild African ungulate herds to improve rangeland health and promote biodiversity. However, this claim has rarely been empirically tested. Focusing on Karoo Escarpment Grasslands in the eastern Karoo, South Africa, we compared patch use patterns of black wildebeest ( Connochaetes gnou ) in a continuously grazed wildlife system with cattle paddock use on farms implementing SDG management in the same landscape. Camera trap data revealed heterogeneous wildebeest patch use over the 26-mo sampling period, with wildebeest consistently using some patches more intensely than others. Mean intensity of patch use by wildebeest varied with a factor of 10, from 0.05 LSU ha(-1) day(-1) to 0.51 LSU ha(-1) day(-1) across patches. The relative difference in mean intensity of paddock use among farms ranged across a similar magnitude from < 0.01 to 0.18 LSU ha(-1) day(-1) for least to most intensely grazed paddocks, respectively. Grazing durations in wildebeest patches ranged from 3-15 d (mean = 8 d), compared to the range of 3-60 d (mean = 18 d) for cattle. Intense grazing periods in wildebeest patches ranged from 0 to 2 d (mean = 1 d) and from 1 to 30 d (mean = 7 d) across cattle farms. The greatest difference was between rest intervals, lasting from 1 to 5 d on average across wildebeest patches, compared to 60-365 d across cattle farms. Our findings suggest that SDG systems prevalent in Karoo Escarpment Grasslands differ from the patch use patterns of black wildebeest in most aspects. These findings add to growing literature on grazing behavior of wild herbivores, and effectively contrasts these patterns with SDG cattle farming practices in the same landscape. (c) 2024 The Author(s). Published by Elsevier Inc. on behalf of The Society for Range Management. This is an open access article under the CC BY -NC -ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/

    Exploring the influence of host community composition on the outbreak potential of Anaplasma phagocytophilum and Borrelia burgdorferi s.l.

    Get PDF
    In large parts of the northern hemisphere, multiple deer species coexist, and management actions can strongly influence wild deer communities. Such changes may also indirectly influence other species in the community, such as small mammals and birds, because deer can have strong effects on their habitats and resources. Deer, small mammals and birds play an important role in the dynamics of tick-borne zoonotic diseases. It is, however, relatively underexplored how the abundance and composition of vertebrate communities may affect the outbreak potential, maintenance and circulation of tick-borne pathogens. In this study we focus on the outbreak potential by exploring how the basic reproduction number R0 for different tick-borne pathogens depends on host community composition. We used published data on co-varying roe deer (Capreolus capreolus) and fallow deer (Dama dama) densities following a hunting ban, and different small mammal and bird densities, to investigate how the change in host community influences the R0 of four tick-borne pathogens: one non-zoonotic, namely Anaplasma phagocytophilum ecotype 2, and three zoonotic, namely A. phagocytophilum ecotype 1, Borrelia afzelii and Borrelia garinii. We calculated R0 using a next generation matrix approach, and used elasticities to quantify the contributions to R0 of the different groups of host species. The value of R0 for A. phagocytophilum ecotype 1 was higher with high fallow deer density and low roe deer density, while it was the other way round for A. phagocytophilum ecotype 2. For B. afzelii, R0 was mostly related to the density of small mammals and for B. garinii it was mostly determined by bird density. Our results show that the effect of species composition is substantial in the outbreak potential of tick-borne pathogens. This implies that also management actions that change this composition, can (indirectly and unintentionally) affect the outbreak potential of tick-borne diseases

    Camtrap DP: an open standard for the FAIR exchange and archiving of camera trap data

    Get PDF
    Camera trapping has revolutionized wildlife ecology and conservation by providing automated data acquisition, leading to the accumulation of massive amounts of camera trap data worldwide. Although management and processing of camera trap-derived Big Data are becoming increasingly solvable with the help of scalable cyber-infrastructures, harmonization and exchange of the data remain limited, hindering its full potential. There is currently no widely accepted standard for exchanging camera trap data. The only existing proposal, "Camera Trap Metadata Standard" (CTMS), has several technical shortcomings and limited adoption. We present a new data exchange format, the Camera Trap Data Package (Camtrap DP), designed to allow users to easily exchange, harmonize and archive camera trap data at local to global scales. Camtrap DP structures camera trap data in a simple yet flexible data model consisting of three tables (Deployments, Media and Observations) that supports a wide range of camera deployment designs, classification techniques (e.g., human and AI, media-based and event-based) and analytical use cases, from compiling species occurrence data through distribution, occupancy and activity modeling to density estimation. The format further achieves interoperability by building upon existing standards, Frictionless Data Package in particular, which is supported by a suite of open software tools to read and validate data. Camtrap DP is the consensus of a long, in-depth, consultation and outreach process with standard and software developers, the main existing camera trap data management platforms, major players in the field of camera trapping and the Global Biodiversity Information Facility (GBIF). Under the umbrella of the Biodiversity Information Standards (TDWG), Camtrap DP has been developed openly, collaboratively and with version control from the start. We encourage camera trapping users and developers to join the discussion and contribute to the further development and adoption of this standard.We present a new data exchange format for camera trap data, the Camera Trap Data Package (Camtrap DP; ), designed to allow users to easily exchange, harmonize and archive camera trap data at local to global scales. Camtrap DP is being developed under the umbrella of the Biodiversity Information Standards (TDWG), and through outreach and collaboration, it is now supported by GBIF. Importantly, Camtrap DP is the consensus of a long, in depth consultation process among the main existing camera trap data management platforms, as well as some of the major global players in the field of camera trapping. As an open, evolving standard for the FAIR exchange and archive of camera trap data, Camtrap DP represents an important step towards a global data sharing workflow with rapid results and thus more timely science based wildlife management recommendations.imag

    Resource partitioning between ungulate populations in arid environments

    No full text
    Herbivores are major drivers of ecosystem structure, diversity, and function. Resilient ecosystems therefore require viable herbivore populations in a sustainable balance with environmental resource availability. This balance is becoming harder to achieve, with increasingly threatened species reliant on small protected areas in increasingly harsh and unpredictable environments. Arid environments in North Africa exemplify this situation, featuring a biologically distinct species assemblage exposed to extreme and volatile conditions, including habitat loss and climate change-associated threats. Here, we implement an integrated likelihood approach to relate scimitar-horned oryx (Oryx dammah) and dorcas gazelle (Gazella dorcas) density, via dung distance sampling, to habitat, predator, and geographic correlates in Dghoumes National Park, Tunisia. We show how two threatened sympatric ungulates partition resources on the habitat axis, exhibiting nonuniform responses to the same vegetation gradient. Scimitar-horned oryx were positively associated with plant species richness, selecting for vegetated ephemeral watercourses (wadis) dominated by herbaceous cover. Conversely, dorcas gazelle were negatively associated with vegetation density (herbaceous height, litter cover, and herbaceous cover), selecting instead for rocky plains with sparse vegetation. We suggest that adequate plant species richness should be a prerequisite for areas proposed for future ungulate reintroductions in arid and semi-arid environments. This evidence will inform adaptive management of reintroduced ungulates in protected environments, helping managers and planners design sustainable ecosystems and effective conservation programs

    The generality of cryptic dietary niche differences in diverse large-herbivore assemblages

    Get PDF
    Ecological niche differences are necessary for stable species coexistence but are often difficult to discern. Models of dietary niche differentiation in large mammalian herbivores invoke the quality, quantity, and spatiotemporal distribution of plant tissues and growth forms but are agnostic toward food plant species identity. Empirical support for these models is variable, suggesting that additional mechanisms of resource partitioning may be important in sustaining large-herbivore diversity in African savannas. We used DNA metabarcoding to conduct a taxonomically explicit analysis of large-herbivore diets across southeastern Africa, analyzing ∼4,000 fecal samples of 30 species from 10 sites in seven countries over 6 y. We detected 893 food plant taxa from 124 families, but just two families—grasses and legumes—accounted for the majority of herbivore diets. Nonetheless, herbivore species almost invariably partitioned food plant taxa; diet composition differed significantly in 97% of pairwise comparisons between sympatric species, and dissimilarity was pronounced even between the strictest grazers (grass eaters), strictest browsers (nongrass eaters), and closest relatives at each site. Niche differentiation was weakest in an ecosystem recovering from catastrophic defaunation, indicating that food plant partitioning is driven by species interactions, and was stronger at low rainfall, as expected if interspecific competition is a predominant driver. Diets differed more between browsers than grazers, which predictably shaped community organization: Grazer-dominated trophic networks had higher nestedness and lower modularity. That dietary differentiation is structured along taxonomic lines complements prior work on how herbivores partition plant parts and patches and suggests that common mechanisms govern herbivore coexistence and community assembly in savannas
    corecore