2,618 research outputs found
Measurements of a low temperature mechanical dissipation peak in a single layer of Ta2O5 doped with TiO2
Thermal noise arising from mechanical dissipation in oxide coatings is a
major limitation to many precision measurement systems, including optical
frequency standards, high resolution optical spectroscopy and interferometric
gravity wave detectors. Presented here are measurements of dissipation as a
function of temperature between 7 K and 290 K in ion-beam sputtered Ta2O5 doped
with TiO2, showing a loss peak at 20 K. Analysis of the peak provides the first
evidence of the source of dissipation in doped Ta2O5 coatings, leading to
possibilities for the reduction of thermal noise effects
Invited Article: CO_2 laser production of fused silica fibers for use in interferometric gravitational wave detector mirror suspensions
In 2000 the first mirror suspensions to use a quasi-monolithic final stage were installed at the GEO600 detector site outside Hannover, pioneering the use of fused silica suspension fibers in long baseline interferometric detectors to reduce suspension thermal noise. Since that time, development of the production methods of fused silica fibers has continued. We present here a review of a novel CO_2 laser-based fiber pulling machine developed for the production of fused silica suspensions for the next generation of interferometric gravitational wave detectors and for use in experiments requiring low thermal noise suspensions. We discuss tolerances, strengths, and thermal noise performance requirements for the next generation of gravitational wave detectors. Measurements made on fibers produced using this machine show a 0.8% variation in vertical stiffness and 0.05% tolerance on length, with average strengths exceeding 4 GPa, and mechanical dissipation which meets the requirements for Advanced LIGO thermal noise performance
Multi-core job submission and grid resource scheduling for ATLAS AthenaMP
AthenaMP is the multi-core implementation of the ATLAS software framework and allows the efficient sharing of memory pages between multiple threads of execution. This has now been validated for production and delivers a significant reduction on the overall application memory footprint with negligible CPU overhead. Before AthenaMP can be routinely run on the LHC Computing Grid it must be determined how the computing resources available to ATLAS can best exploit the notable improvements delivered by switching to this multi-process model. A study into the effectiveness and scalability of AthenaMP in a production environment will be presented. Best practices for configuring the main LRMS implementations currently used by grid sites will be identified in the context of multi-core scheduling optimisation
Silica suspension and coating developments for Advanced LIGO
The proposed upgrade to the LIGO detectors to form the Advanced LIGO detector system is intended to incorporate a low thermal noise monolithic fused silica final stage test mass suspension based on developments of the GEO 600 suspension design. This will include fused silica suspension elements jointed to fused silica test mass substrates, to which dielectric mirror coatings are applied.
The silica fibres used for GEO 600 were pulled using a Hydrogen-Oxygen flame system. This successful system has some limitations, however, that needed to be overcome for the more demanding suspensions required for Advanced LIGO. To this end a fibre pulling machine based on a CO2 laser as the heating element is being developed in Glasgow with funding from EGO and PPARC.
At the moment a significant limitation for proposed detectors like Advanced LIGO is expected to come from the thermal noise of the mirror coatings. An investigation on mechanical losses of silica/tantala coatings was carried out by several labs involved with Advanced LIGO R&D. Doping the tantala coating layer with titania was found to reduce the coating mechanical dissipation. A review of the results is given here
Thermodynamic metrics and optimal paths
A fundamental problem in modern thermodynamics is how a molecular-scale
machine performs useful work, while operating away from thermal equilibrium
without excessive dissipation. To this end, we derive a friction tensor that
induces a Riemannian manifold on the space of thermodynamic states. Within the
linear-response regime, this metric structure controls the dissipation of
finite-time transformations, and bestows optimal protocols with many useful
properties. We discuss the connection to the existing thermodynamic length
formalism, and demonstrate the utility of this metric by solving for optimal
control parameter protocols in a simple nonequilibrium model.Comment: 5 page
Density fluctuations and the structure of a nonuniform hard sphere fluid
We derive an exact equation for density changes induced by a general external
field that corrects the hydrostatic approximation where the local value of the
field is adsorbed into a modified chemical potential. Using linear response
theory to relate density changes self-consistently in different regions of
space, we arrive at an integral equation for a hard sphere fluid that is exact
in the limit of a slowly varying field or at low density and reduces to the
accurate Percus-Yevick equation for a hard core field. This and related
equations give accurate results for a wide variety of fields
Segue Between Favorable and Unfavorable Solvation
Solvation of small and large clusters are studied by simulation, considering
a range of solvent-solute attractive energy strengths. Over a wide range of
conditions, both for solvation in the Lennard-Jones liquid and in the SPC model
of water, it is shown that the mean solvent density varies linearly with
changes in solvent-solute adhesion or attractive energy strength. This behavior
is understood from the perspective of Weeks' theory of solvation [Ann. Rev.
Phys. Chem. 2002, 53, 533] and supports theories based upon that perspective.Comment: 8 pages, 7 figure
Extended Clausius Relation and Entropy for Nonequilibrium Steady States in Heat Conducting Quantum Systems
Recently, in their attempt to construct steady state thermodynamics (SST),
Komatsu, Nakagwa, Sasa, and Tasaki found an extension of the Clausius relation
to nonequilibrium steady states in classical stochastic processes. Here we
derive a quantum mechanical version of the extended Clausius relation. We
consider a small system of interest attached to large systems which play the
role of heat baths. By only using the genuine quantum dynamics, we realize a
heat conducting nonequilibrium steady state in the small system. We study the
response of the steady state when the parameters of the system are changed
abruptly, and show that the extended Clausius relation, in which "heat" is
replaced by the "excess heat", is valid when the temperature difference is
small. Moreover we show that the entropy that appears in the relation is
similar to von Neumann entropy but has an extra symmetrization with respect to
time-reversal. We believe that the present work opens a new possibility in the
study of nonequilibrium phenomena in quantum systems, and also confirms the
robustness of the approach by Komtatsu et al.Comment: 19 pages, 2 figure
Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings
We report on thermal noise from the internal friction of dielectric coatings
made from alternating layers of Ta2O5 and SiO2 deposited on fused silica
substrates. We present calculations of the thermal noise in gravitational wave
interferometers due to optical coatings, when the material properties of the
coating are different from those of the substrate and the mechanical loss angle
in the coating is anisotropic. The loss angle in the coatings for strains
parallel to the substrate surface was determined from ringdown experiments. We
measured the mechanical quality factor of three fused silica samples with
coatings deposited on them. The loss angle of the coating material for strains
parallel to the coated surface was found to be (4.2 +- 0.3)*10^(-4) for
coatings deposited on commercially polished slides and (1.0 +- 0.3)*10^{-4} for
a coating deposited on a superpolished disk. Using these numbers, we estimate
the effect of coatings on thermal noise in the initial LIGO and advanced LIGO
interferometers. We also find that the corresponding prediction for thermal
noise in the 40 m LIGO prototype at Caltech is consistent with the noise data.
These results are complemented by results for a different type of coating,
presented in a companion paper.Comment: Submitted to LSC (internal) review Sept. 20, 2001. To be submitted to
Phys. Lett.
- …
