341 research outputs found
Time-resolved fuel injector flow characterisation based on 3D laser Doppler vibrometry
In order to enable investigations of the fuel flow inside unmodified
injectors, we have developed a new experimental approach to measure
time-resolved vibration spectra of diesel nozzles using a three dimensional
laser vibrometer. The technique we propose is based on the triangulation of the
vibrometer and fuel pressure transducer signals, and enables the quantitative
characterisation of quasi-cyclic internal flows without requiring modifications
to the injector, the working fluid, or limiting the fuel injection pressure.
The vibrometer, which uses the Doppler effect to measure the velocity of a
vibrating object, was used to scan injector nozzle tips during the injection
event. The data were processed using a discrete Fourier transform to provide
time-resolved spectra for valve-closed-orifice, minisac and microsac nozzle
geometries, and injection pressures ranging from 60 to 160MPa, hence offering
unprecedented insight into cyclic cavitation and internal mechanical dynamic
processes. A peak was consistently found in the spectrograms between 6 and
7.5kHz for all nozzles and injection pressures. Further evidence of a similar
spectral peak was obtained from the fuel pressure transducer and a needle lift
sensor mounted into the injector body. Evidence of propagation of the nozzle
oscillations to the liquid sprays was obtained by recording high-speed videos
of the near-nozzle diesel jet, and computing the fast Fourier transform for a
number of pixel locations at the interface of the jets. This 6-7.5kHz frequency
peak is proposed to be the natural frequency for the injector's main internal
fuel line. Other spectral peaks were found between 35 and 45kHz for certain
nozzle geometries, suggesting that these particular frequencies may be linked
to nozzle dependent cavitation phenomena.Comment: 12 pages, 10 figure
Droplet size and morphology characterization for diesel sprays under atmospheric operating conditions
The shape of microscopic fuel droplets may differ from the perfect sphere, affecting their external surface area and thus the heat transfer with the surrounding gas. Hence there is a need for the characterization of droplet shapes, and the estimation of external surface area, in order to enable the development of physically accurate mathematical models for the heating and evaporation of diesel fuel sprays. We present ongoing work to automat-ically identify and reconstruct the morphology of fuel droplets, primarily focusing in this study on irregularly-shaped, partially-deformed and oscillating droplets under atmospheric conditions. We used direct imaging tech-niques based on long-working distance microscopy and ultra-high-speed video to conduct a detailed temporal investigation of droplet morphology. We applied purpose-built algorithms to extract droplet size, velocity, vol-ume and external surface area from the microscopic ultra-high-speed video frames. High resolution images of oscillating droplets and a formation of a droplet form ligament, sphericity factors, volume as well as external surface area are presented for 500 bar injection pressure in the near nozzle region (up to 0.7 mm from nozzle exit) under atmospheric conditions. We observed a range of different liquid structures, including perfectly spher-ical, non-spherical droplets and stretched ligaments. We found that large droplets and ligaments exceeding the size of the nozzle hole could be found at the end of injection. In order to estimate droplet volume and external surface area from two-dimensional droplet information, a discrete revolution of the droplet silhouette about its major centroidal axis was used. Special attention was paid to the estimation of actual errors in the prediction of volume and surface characteristics from a droplet silhouette. In addition to the estimation of droplet volume and external surface area, the actual shape reconstruction in 3D coordinates from a droplet silhouette was performed in order to enable future numerical modelling studies of real droplets
The effect of operating conditions on post-injection fuel discharge in an optical engine
After the end of injection, the needle closes and residual fuel present inside the injector sac and orifices is discharged due to the high fluid inertia. This so-called post-injection fuel discharge can present several problems. The excess fuel can undergo incomplete combustion due to its large, slow moving and often surface-bound nature. Not only does this have a negative effect on emissions and performance, but it has been speculated that the by-products of incomplete combustion are implicated in the growth of carbonaceous deposits on the tips of fuel injectors. Accumulation of these deposits is known to lead to premature fuel injector failure that can lead to re-ductions in power output and engine lifetime. Seeing as modern multiple-injection strategies give rise to an in-creased number of transient injection phases, post-injection discharges are an increasingly common occurrence during normal operating conditions. In order to develop a phenomenological model for the fluid dynamics after the end of injection, there is a need to characterise the causes of this discharge and how they might be influenced by engine operating conditions. In this study we present ongoing analysis into results from the first visualisation of post injection fuel discharge at the microscopic level under engine-like operating conditions. We observed the process of fuel discharge for multi-hole injectors, using a high-speed camera fitted with a long-distance micro-scope and a high-speed laser illumination source. We related the effect of a variety of operating conditions on the severity of this process, including injection pressure and in-cylinder pressure along with a characterisation of the dynamics of the various modes by which these undesired liquid structures are produced. We present the different modes by which this process occurs and we conclude that the extent of post-injection discharge depends on both the in-cylinder and injection pressures
Modelling of heating and evaporation of biodiesel fuel droplets
This paper presents the application of the Discrete Component Model for heating and evaporation to multi-component biodiesel fuel droplets in direct injection internal combustion engines. This model takes into account the effects of temperature gradient, recirculation and species diffusion inside droplets. A distinctive feature of the model used in the analysis is that it is based on the analytical solutions to the temperature and species diffusion equations inside the droplets. Nineteen types of biodiesel fuels are considered. It is shown that a simplistic model, based on the approximation of biodiesel fuel by a single component or ignoring the diffusion of components of biodiesel fuel, leads to noticeable errors in predicted droplet evaporation time and time evolution of droplet surface temperature and radius
Direct imaging of primary atomisation in the near-nozzle region of diesel sprays
The spray formation and breakup of n-dodecane was investigated experimentally on a common rail diesel injector using a long working distance microscope. The objectives were to further the fundamental understanding of the processes involved in the initial stage of diesel spray formation under engine-like operating conditions, i.e. high ambient pressure and temperature. Present measurements show that the end of injection is dependent on injection pressure for low injection pressure of 50 MPa and independent for 100-150 MPa pressure range. The end of injection was characterized by large ligaments and deformed droplets along with spherical droplets. It was noted that formation of large droplets during end of injection was not related to injection pressure. The large droplets were found to be in the range of up to 50 μm, which were moving with relatively low velocity. Typical velocity range for large droplets (30-50 μm) was between 1.5 to 5 m/s. The trajectory of individual droplets appeared to be random from injection to injection. It was particularly emphasized that the real fuel injector under engine-like operating conditions can produce a fuel spray, which can be a mix of liquid and vapour at the start of injection.
In this publication we report on progress made with ongoing experimental investigations of the atomisation of n-dodecane by using microscopic imaging and high-speed video using ECN ‘Spray A’ injector. A long-distance microscopy was used to study near-nozzle region (1.025x0.906 mmm). Our study focuses on the primary atomisation during the start, the steady-state and the end of the injection process
Recommended from our members
Simulation and Measurement of Transient Fluid Phenomena within Diesel Injection
Rail pressures of modern diesel fuel injection systems have increased significantly over recent years, greatly improving atomisation of the main fuel injection event and air utilisation of the combustion process. Continued improvement in controlling the process of introducing fuel into the cylinder has led to focussing on fluid phenomena related to transient response. High-speed microscopy has been employed to visualise the detailed fluid dynamics around the near nozzle region of an automotive diesel fuel injector, during the opening, closing and post injection events. Complementary computational fluid dynamic (CFD) simulations have been undertaken to elucidate the interaction of the liquid and gas phases during these highly transient events, including an assessment of close-coupled injections. Microscopic imaging shows the development of a plug flow in the initial stages of injection, with rapid transition into a primary breakup regime, transitioning to a finely atomised spray and subsequent vaporisation of the fuel. During closuring of the injector the spray collapses, with evidence of swirling breakup structures together with unstable ligaments of fuel breaking into large slow-moving droplets. This leads to sub-optimal combustion in the developing flame fronts established by the earlier, more fully-developed spray. The simulation results predict these observed phenomena, including injector surface wetting as a result of large slow-moving droplets and post-injection discharge of liquid fuel. This work suggests that post-injection discharges of fuel play a part in the mechanism of the initial formation, and subsequent accumulation of deposits on the exterior surface of the injector. For multiple injections, opening events are influenced by the dynamics of the previous injection closure; these phenomena have been investigated within the simulations
Experimental investigation and modeling of diesel engine fuel spray
A model for spray penetration in diesel engines is suggested.
It is based on momentum conservation for a realistic
mass flow rate transient profile. The modelling approach is
based on tracking of centre-of-fuel-mass (COFM) of injected
diesel fuel. The model was validated for Bosch and Delphi
injectors using the data obtained at Sir Harry Ricardo automotive
centre, University of Brighton, UK. The model is shown to
produce a good agreement with the experimental data until
major spray instability (such as cluster shedding). It has been
found that the dispersion time (the adjustable model parameter)
is increasing when injection pressure is decreasing. This follows
the known tendency for spray breakup time
A model for mono- and multi-component droplet heating and evaporation and its implementation into ANSYS Fluent
[EN] A model for heating and evaporation of mono- and multi-component droplets, based on analytical solutions to the
heat transfer and species diffusion equations in the liquid phase, is summarised. The implementation of the model
into ANSYS Fluent via User-Defined Functions (UDF) is described. The model is applied to the analysis of pure
acetone, ethanol, and mixtures of acetone/ethanol droplet heating/cooling and evaporation. The predictions of the
customised version of ANSYS Fluent with the newly implemented UDF model are verified against the results
predicted by the previously developed in house, one-dimensional code.The authors would like to recognise that this work was supported by the UK’s Engineering and Physical Science
Research Council, a studentship to support one of the authors (LP) [EPSRC grant EP/N509607/1; EP/K005758/1;
EP/K020528/1; EP/M002608/1]Poulton, L.; Rybdylova, O.; Sazhin, SS.; Crua, C.; Qubeissi, M.; Elwardany, AE. (2017). A model for mono- and multi-component droplet heating and evaporation and its implementation into ANSYS Fluent. En Ilass Europe. 28th european conference on Liquid Atomization and Spray Systems. Editorial Universitat Politècnica de València. 67-74. https://doi.org/10.4995/ILASS2017.2017.4759OCS677
- …
