52 research outputs found
A Noncoding Point Mutation of Zeb1 Causes Multiple Developmental Malformations and Obesity in Twirler Mice
Heterozygous Twirler (Tw) mice develop obesity and circling behavior associated with malformations of the inner ear, whereas homozygous Tw mice have cleft palate and die shortly after birth. Zeb1 is a zinc finger protein that contributes to mesenchymal cell fate by repression of genes whose expression defines epithelial cell identity. This developmental pathway is disrupted in inner ears of Tw/Tw mice. The purpose of our study was to comprehensively characterize the Twirler phenotype and to identify the causative mutation. The Tw/+ inner ear phenotype includes irregularities of the semicircular canals, abnormal utricular otoconia, a shortened cochlear duct, and hearing loss, whereas Tw/Tw ears are severely malformed with barely recognizable anatomy. Tw/+ mice have obesity associated with insulin-resistance and have lymphoid organ hypoplasia. We identified a noncoding nucleotide substitution, c.58+181G>A, in the first intron of the Tw allele of Zeb1 (Zeb1Tw). A knockin mouse model of c.58+181G>A recapitulated the Tw phenotype, whereas a wild-type knockin control did not, confirming the mutation as pathogenic. c.58+181G>A does not affect splicing but disrupts a predicted site for Myb protein binding, which we confirmed in vitro. In comparison, homozygosity for a targeted deletion of exon 1 of mouse Zeb1, Zeb1ΔEx1, is associated with a subtle abnormality of the lateral semicircular canal that is different than those in Tw mice. Expression analyses of E13.5 Twirler and Zeb1ΔEx1 ears confirm that Zeb1ΔEx1 is a null allele, whereas Zeb1Tw RNA is expressed at increased levels in comparison to wild-type Zeb1. We conclude that a noncoding point mutation of Zeb1 acts via a gain-of-function to disrupt regulation of Zeb1Tw expression, epithelial-mesenchymal cell fate or interactions, and structural development of the inner ear in Twirler mice. This is a novel mechanism underlying disorders of hearing or balance
CpG island methylation status and mutation analysis of the RB1 gene essential promoter region and protein-binding pocket domain in nervous system tumours
αB-crystallin Expression in Breast Cancer is Associated with Brain Metastasis.
Background/objectives The molecular chaperone αB-crystallin is expressed in estrogen receptor, progesterone receptor and human epidermal growth factor receptor-2 "triple-negative" breast carcinomas and promotes brain and lung metastasis. We examined αB-crystallin expression in primary breast carcinomas with metastatic data to evaluate its association with prognosis and site-specific metastases.Methods αB-crystallin gene (CRYAB) expression was examined using publically available global-gene expression data (n=855 breast tumors) with first site of distant metastasis information ("855Met"). αB-crystallin protein expression was determined by immunohistochemistry using the clinically annotated tissue microarray (n=3987 breast tumors) from British Columbia Cancer Agency (BCCA). Kaplan-Meier and multivariable Cox regression analyses were used to evaluate the prognostic value of αB-crystallin. Multivariable logistic regression analysis was used to evaluate risks of αB-crystallin and other markers for site of metastasis.Results In the 855Met dataset, αB-crystallin gene (CRYAB) expression was an independent predictor of brain as the first distant site of relapse (HR = 1.2, (95% CI 1.0-1.4), P = 0.021). In the BCCA series, αB-crystallin protein expression was an independent prognostic marker of poor breast cancer specific survival (HR = 1.3, (95% CI 1.1-1.6), P = 0.014). Among patients with metastases, αB-crystallin was the strongest independent predictor of brain metastasis (OR = 2.99 (95% CI 1.83-4.89), P P = 0.005). αB-crystallin was also associated with worse survival (3.0 versus 4.7 months, P = 0.007).Conclusions αB-crystallin is a promising biomarker to identify breast cancer patients at high risk for early relapse in the brain, independent of ER and HER2 status
αB-crystallin Expression in Breast Cancer is Associated with Brain Metastasis.
BACKGROUND/OBJECTIVES: The molecular chaperone αB-crystallin is expressed in estrogen receptor, progesterone receptor and human epidermal growth factor receptor-2 "triple-negative" breast carcinomas and promotes brain and lung metastasis. We examined αB-crystallin expression in primary breast carcinomas with metastatic data to evaluate its association with prognosis and site-specific metastases. METHODS: αB-crystallin gene (CRYAB) expression was examined using publically available global-gene expression data (n=855 breast tumors) with first site of distant metastasis information ("855Met"). αB-crystallin protein expression was determined by immunohistochemistry using the clinically annotated tissue microarray (n=3987 breast tumors) from British Columbia Cancer Agency (BCCA). Kaplan-Meier and multivariable Cox regression analyses were used to evaluate the prognostic value of αB-crystallin. Multivariable logistic regression analysis was used to evaluate risks of αB-crystallin and other markers for site of metastasis. RESULTS: In the 855Met dataset, αB-crystallin gene (CRYAB) expression was an independent predictor of brain as the first distant site of relapse (HR = 1.2, (95% CI 1.0-1.4), P = 0.021). In the BCCA series, αB-crystallin protein expression was an independent prognostic marker of poor breast cancer specific survival (HR = 1.3, (95% CI 1.1-1.6), P = 0.014). Among patients with metastases, αB-crystallin was the strongest independent predictor of brain metastasis (OR = 2.99 (95% CI 1.83-4.89), P < 0.0001) and the only independent predictor of brain as the first site of distant metastasis (OR = 3.15 (95% CI1.43-6.95), P = 0.005). αB-crystallin was also associated with worse survival (3.0 versus 4.7 months, P = 0.007). CONCLUSIONS: αB-crystallin is a promising biomarker to identify breast cancer patients at high risk for early relapse in the brain, independent of ER and HER2 status
MEN1 gene alterations do not correlate with the phenotype of sporadic primary hyperparathyroidism
- …
