29 research outputs found

    Diversity of S-Alleles and Mate Availability in 3 Populations of Self-Incompatible Wild Pear (Pyrus pyraster)

    Get PDF
    Small populations of self-incompatible plants may be expected to be threatened by the limitation of compatible mating partners (i.e., S-Allee effect). However, few empirical studies have explicitly tested the hypothesis of mate limitation in small populations of self-incompatible plants. To do so, we studied wild pear (Pyrus pyraster), which possesses a gametophytic self-incompatibility system. We determined the S-genotypes in complete samplings of all adult trees from 3 populations using a PCR-RFLP approach. We identified a total of 26 different S-alleles, homologous to S-alleles of other woody Rosaceae. The functionality of S-alleles and their Mendelian inheritance were verified in artificial pollination experiments and investigations of pollen tube growth. The smallest population (N = 8) harbored 9 different S-alleles and showed a mate availability of 92.9%, whereas the 2 larger populations harbored 18 and 25 S-alleles and exhibited mate availabilities of 98.4% and 99.2%, respectively. Therefore, we conclude that even small populations of gametophytic self-incompatible plants may exhibit high diversity at the S-locus and are not immediately threatened owing to reduced mate availabilit

    Application of genetic markers to the discrimination of European Black Poplar ( Populus nigra ) from American Black Poplar ( P. deltoides ) and Hybrid Poplars ( P. x canadensis ) in Switzerland

    Get PDF
    European Black Poplar (Populus nigra) is considered a rare and endangered tree species because of severe reduction of its natural riverine habitat and potential hybridisation with the related non-indigenous taxa P. deltoides and P. x canadensis. As it is difficult to distinguish these taxa solely based on their morphology, we applied a PCR-based assay with an easy-to-use and robust molecular marker set (cpDNA trnL-trnF/RsaI RFLP, nDNA win3 and nDNA POPX/MspI RFLP) in order to identify pure P. nigra. Different plant tissues could be used for fast and standardised DNA extraction. The application of the three marker types was tested on a number of different Populus taxa, and they were also used for the verification of pure P. nigra in a sample of 304 putative P. nigra individuals from Switzerland. Cross-checking of the DNA data with those using a traditional allozyme approach resulted in complete agreement. The availability of molecular identification methods is an important prerequisite for the conservation of European Black Poplar, because pure, non-introgressed plant material can then be used in restoration projects of European floodplain

    Identification and characterisation of ten microsatellite loci in the Noisy Scrub-bird Atrichornis clamosus using next-generation sequencing technology

    Get PDF
    The Noisy Scrub-bird is an endangered species of songbird endemic to the south coast of Western Australia that has undergone a major and prolonged population bottleneck. Using shotgun 454 next-generation DNA sequencing we have identified and characterised ten polymorphic microsatellite loci in this species. Observed allelic diversity was relatively low (2–5 alleles per locus) and significant deviations from Hardy–weinberg Equilibrium observed, although the presence of null alleles was onlypostulated for two loci. The microsatellite loci characterised in this study will be useful in a future population genetics studies in this endangered species

    Microsatellite markers: what they mean and why they are so useful

    Full text link

    Exploring Pandora's Box: potential and pitfalls of low coverage genome surveys for evolutionary biology

    Get PDF
    High throughput sequencing technologies are revolutionizing genetic research. With this ‘‘rise of the machines’’, genomic sequences can be obtained even for unknown genomes within a short time and for reasonable costs. This has enabled evolutionary biologists studying genetically unexplored species to identify molecular markers or genomic regions of interest (e.g. micro- and minisatellites, mitochondrial and nuclear genes) by sequencing only a fraction of the genome. However, when using such datasets from non-model species, it is possible that DNA from non-target contaminant species such as bacteria, viruses, fungi, or other eukaryotic organisms may complicate the interpretation of the results. In this study we analysed 14 genomic pyrosequencing libraries of aquatic non-model taxa from four major evolutionary lineages. We quantified the amount of suitable micro- and minisatellites, mitochondrial genomes, known nuclear genes and transposable elements and searched for contamination from various sources using bioinformatic approaches. Our results show that in all sequence libraries with estimated coverage of about 0.02–25%, many appropriate micro- and minisatellites, mitochondrial gene sequences and nuclear genes from different KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways could be identified and characterized. These can serve as markers for phylogenetic and population genetic analyses. A central finding of our study is that several genomic libraries suffered from different biases owing to non-target DNA or mobile elements. In particular, viruses, bacteria or eukaryote endosymbionts contributed significantly (up to 10%) to some of the libraries analysed. If not identified as such, genetic markers developed from high-throughput sequencing data for non-model organisms may bias evolutionary studies or fail completely in experimental tests. In conclusion, our study demonstrates the enormous potential of low-coverage genome survey sequences and suggests bioinformatic analysis workflows. The results also advise a more sophisticated filtering for problematic sequences and non-target genome sequences prior to developing markers

    Controlling the Amplitude of a Resonant Rotational Reluctance Actuated Scanning Mirror System

    No full text
    This paper describes the development and implementation of three driving strategies for the oscillation amplitude control of a resonant rotational reluctance actuated scanning mirror system. The three driving strategies exploit control of current input amplitude, pulse duration, and the phase between the input and the mover angle. Linear PI-controllers are developed for each driving strategy for the linearized plant around an operating point of the highly nonlinear system. The implemented driving strategies are compared over a wide operating range of the scanning mirror system, regarding their closed-loop dynamics in the time-domain, revealing their fundamental differences. Phase-control is the most promising control strategy, delivering the highest closed-loop bandwidth of at least 11 Hz over the entire investigated operating range at worst with a rise-time of 30 ms at a step response
    corecore