235 research outputs found

    Ultrafast control of Rabi oscillations in a polariton condensate

    Get PDF
    We report the experimental observation and control of space and time-resolved light-matter Rabi oscillations in a microcavity. Our setup precision and the system coherence are so high that coherent control can be implemented with amplification or switching off of the oscillations and even erasing of the polariton density by optical pulses. The data is reproduced by a fundamental quantum optical model with excellent accuracy, providing new insights on the key components that rule the polariton dynamics.Comment: 5 pages, 3 figures, supplementary 7 pages, 4 figures. Supplementary videos: https://drive.google.com/folderview?id=0B0QCllnLqdyBNjlMLTdjZlNhbTQ&usp=sharin

    Halo based reconstruction of the cosmic mass density field

    Full text link
    We present the implementation of a halo based method for the reconstruction of the cosmic mass density field. The method employs the mass density distribution of dark matter haloes and its environments computed from cosmological N-body simulations and convolves it with a halo catalog to reconstruct the dark matter density field determined by the distribution of haloes. We applied the method to the group catalog of Yang etal (2007) built from the SDSS Data Release 4. As result we obtain reconstructions of the cosmic mass density field that are independent on any explicit assumption of bias. We describe in detail the implementation of the method, present a detailed characterization of the reconstructed density field (mean mass density distribution, correlation function and counts in cells) and the results of the classification of large scale environments (filaments, voids, peaks and sheets) in our reconstruction. Applications of the method include morphological studies of the galaxy population on large scales and the realization of constrained simulations.Comment: Accepted for publication in MNRA

    The Redshift Evolution of LCDM Halo Parameters: Concentration, Spin, and Shape

    Full text link
    We present a detailed study of the redshift evolution of dark matter halo structural parameters in a LambdaCDM cosmology. We study the mass and redshift dependence of the concentration, shape and spin parameter in Nbody simulations spanning masses from 10^{10} Msun/h to 10^{15} Msun/h and redshifts from 0 to 2. We present a series of fitting formulas that accurately describe the time evolution of the concentration-mass relation since z=2. Using arguments based on the spherical collapse model we study the behaviour of the scale length of the density profile during the assembly history of haloes, obtaining physical insights on the origin of the observed time evolution of the concentration mass relation. We also investigate the evolution with redshift of dark matter halo shape and its dependence on mass. Within the studied redshift range the relation between halo shape and mass can be well fitted by a power law. Finally we show that although for z=0 the spin parameter is practically mass independent, at increasing redshift it shows a increasing correlation with mass.Comment: 12 pages, 11 figures, accepted to MNRAS, minor changes to previous versio

    The development and features of the Spanish prehospital advanced triage method (META) for mass casualty incidents

    Get PDF
    This text describes the process of development of the new Spanish Prehospital Advanced Triage Method (META) and explain its main features and contribution to prehospital triage systems in mass casualty incidents. The triage META is based in the Advanced Trauma Life Support (ATLS) protocols, patient’s anatomical injuries and mechanism of injury. It is a triage method with four stages including early identification of patients with severe trauma that would benefit from a rapid evacuation to a surgical facility and introduces a new patient flow by-passing the advanced medical post to improve evacuation. The stages of triage META are: I) Stabilization triage that classifies patients according to severity to set priorities for initial emergency treatment; II) Identifying patients requiring urgent surgical treatment, this is done at the same time than stage I and creates a new flow of patients with high priority for evacuation; III) Implementation of Advanced Trauma Life Support protocols to patients previously classified according to stablished priority; and IV) Evacuation triage, stablishing evacuation priorities in case of lacks of appropriate transport resources. The triage META is to be applied only by prehospital providers with advanced knowledge and training in advanced trauma life support care and has been designed to be implemented as prehospital procedure in mass casualty incidents (MCI)

    Disentangling cosmic-ray and dark-matter induced gamma-rays in galaxy clusters?

    Full text link
    Galaxy clusters are among the best targets for indirect dark matter detection in gamma-rays, despite the large astrophysical background expected from these objects. Detection is now within reach of current observatories (Fermi-LAT or Cerenkov telescopes); however, assessing the origin of this signal might be difficult. We investigate whether the behaviour of the number of objects per `flux' bin (logN-logF) and that of the stacked signal could be used as a signature of the dominant process at stake.We use the CLUMPY code to integrate the signal from decaying or annihilating dark matter and cosmic rays along the line of sight. We assume the standard NFW profile for the dark matter density and rely on a parametrised emissivity for the cosmic-ray component. In this context, the consequences of stacking are explored using the MCXC meta-catalogue of galaxy clusters. We find the value of the slope of the logN-logF power law (or the increase of the signal with the number of stacked objects) to be a clear diagnosis to disentangle decaying dark matter from cosmic-ray induced gamma-rays. For dark matter annihilation, depending on the signal boost from the substructures, it is either similar to the cosmic-ray signal (no boost) or similar to the decay case (large boosts). The shift between the brightest object and its followers also depends on the signal origin. For annihilation, this shift and the stacked signal are poorly constrained because of the large uncertainty affecting the boost. We also underline that the angular dependence of the annihilation signal is not universal because of the substructure contribution.Comment: 7 pages, 3 figures, minor corrections (to match the A&A accepted version

    Reconstructing the Cosmic Velocity and Tidal Fields with Galaxy Groups Selected from the Sloan Digital Sky Survey

    Full text link
    [abridge]Cosmic velocity and tidal fields are important for the understanding of the cosmic web and the environments of galaxies, and can also be used to constrain cosmology. In this paper, we reconstruct these two fields in SDSS volume from dark matter halos represented by galaxy groups. Detailed mock catalogues are used to test the reliability of our method against uncertainties arising from redshift distortions, survey boundaries, and false identifications of groups by our group finder. We find that both the velocity and tidal fields, smoothed on a scale of ~2Mpc/h, can be reliably reconstructed in the inner region (~66%) of the survey volume. The reconstructed tidal field is used to split the cosmic web into clusters, filaments, sheets, and voids, depending on the sign of the eigenvalues of tidal tensor. The reconstructed velocity field nicely shows how the flows are diverging from the centers of voids, and converging onto clusters, while sheets and filaments have flows that are convergent along one and two directions, respectively. We use the reconstructed velocity field and the Zel'dovich approximation to predict the mass density field in the SDSS volume as function of redshift, and find that the mass distribution closely follows the galaxy distribution even on small scales. We find a large-scale bulk flow of about 117km/s in a very large volume, equivalent to a sphere with a radius of ~170Mpc/h, which seems to be produced by the massive structures associated with the SDSS Great Wall. Finally, we discuss potential applications of our reconstruction to study the environmental effects of galaxy formation, to generate initial conditions for simulations of the local Universe, and to constrain cosmological models. The velocity, tidal and density fields in the SDSS volume, specified on a Cartesian grid with a spatial resolution of ~700kpc/h, are available from the authors upon request.Comment: 35 pages, 13 figures, accepted for publication in MNRA

    Galaxy cluster mass reconstruction project - I. Methods and first results on galaxy-based techniques

    Get PDF
    This paper is the first in a series in which we perform an extensive comparison of various galaxy-based cluster mass estimation techniques that utilize the positions, velocities and colours of galaxies. Our primary aim is to test the performance of these cluster mass estimation techniques on a diverse set of models that will increase in complexity. We begin by providing participating methods with data from a simple model that delivers idealized clusters, enabling us to quantify the underlying scatter intrinsic to these mass estimation techniques. The mock catalogue is based on a Halo Occupation Distribution (HOD) model that assumes spherical Navarro, Frenk and White (NFW) haloes truncated at R₂₀₀, with no substructure nor colour segregation, and with isotropic, isothermal Maxwellian velocities. We find that, above 1014Mʘ, recovered cluster masses are correlated with the true underlying cluster mass with an intrinsic scatter of typically a factor of 2. Below 1014Mʘ, the scatter rises as the number of member galaxies drops and rapidly approaches an order of magnitude. We find that richness-based methods deliver the lowest scatter, but it is not clear whether such accuracy may simply be the result of using an over-simplistic model to populate the galaxies in their haloes. Even when given the true cluster membership, large scatter is observed for the majority non-richness-based approaches, suggesting that mass reconstruction with a low number of dynamical tracers is inherently problematic

    Resolving the disc–halo degeneracy – I: a look at NGC 628

    Get PDF
    The decomposition of the rotation curve of galaxies into contribution from the disc and dark halo remains uncertain and depends on the adopted mass-to-light ratio (M/L) of the disc. Given the vertical velocity dispersion of stars and disc scale height, the disc surface mass density and hence the M/L can be estimated. We address a conceptual problem with previous measurements of the scale height and dispersion. When using this method, the dispersion and scale height must refer to the same population of stars. The scale height is obtained from near-infrared (IR) studies of edge-on galaxies and is weighted towards older kinematically hotter stars, whereas the dispersion obtained from integrated light in the optical bands includes stars of all ages. We aim to extract the dispersion for the hotter stars, so that it can then be used with the correct scale height to obtain the disc surface mass density. We use a sample of planetary nebulae (PNe) as dynamical tracers in the face-on galaxy NGC 628. We extract two different dispersions from its velocity histogram – representing the older and younger PNe. We also present complementary stellar absorption spectra in the inner regions of this galaxy and use a direct pixel fitting technique to extract the two components. Our analysis concludes that previous studies, which do not take account of the young disc, underestimate the disc surface mass density by a factor of ∼2. This is sufficient to make a maximal disc for NGC 628 appear like a submaximal disc
    corecore