384 research outputs found
E47 and Id1 interplay in epithelial-mesenchymal transition
E12/E47 proteins (encoded by E2A gene) are members of the class I basic helix-loop-helix (bHLH) transcription factors (also known as E proteins). E47 has been described as repressor of E-cadherin and inducer of epithelial-mesenchymal transition (EMT). We reported previously that EMT mediated by E47 in MDCK cells occurs with a concomitant overexpression of Id1 and Id3 proteins. Id proteins belong to class V of HLH factors that lack the basic domain; they dimerise with E proteins and prevent their DNA interaction, thus, acting as dominant negative of E proteins. Here, we show that E47 interacts with Id1 in E47 overexpressing MDCK cells that underwent a full EMT as well as in mesenchymal breast carcinoma and melanoma cell lines. By conducting chromatin immunoprecipitation assays we demonstrate that E47 binds directly to the endogenous E-cadherin promoter of mesenchymal MDCK-E47 cells in a complex devoid of Id1. Importantly, our data suggest that both E47 and Id1 are required to maintain the mesenchymal phenotype of MDCK-E47 cells. These data support the collaboration between E47 and Id1 in the maintenance of EMT by mechanisms independent of the dominant negative action of Id1 on E47 binding to E-cadherin promoter. Finally, the analysis of several N0 breast tumour series indicates that the expression of E47 and ID1 is significantly associated with the basal-like phenotype supporting the biological significance of the present findingsThis work was supported by the Spanish Ministry of Education and Science (SAF2007-63051; SAF2010-21143; Consolider Ingenio 2010 CDS07/00017) to
A.C.; (SAF2007-63075 and SAF2010-20175) to G.M.B.; Comunidad de Madrid (S2010/BMD-2303) to A.C and G.M.
Phase I clinical and pharmacokinetic study of PM01183 (a tetrahydroisoquinoline, Lurbinectedin) in combination with gemcitabine in patients with advanced solid tumors
Background To determine the recommended dose (RD) of a combination of PM01183 and gemcitabine in patients with advanced solid tumors. Methods Forty-five patients received escalating doses of PM01183/gemcitabine on Days 1 and 8 every 3 weeks (d1,8 q3wk) following a standard 3 + 3 design. Results PM01183 3.5 mg flat dose (FD)/gemcitabine 1000 mg/m(2) was the highest dose level tested. Dose-limiting toxicities (DLTs) were mostly hematological and resulted in the expansion of a lower dose level (PM01183 3.5 mg FD/gemcitabine 800 mg/m(2)); 19 patients at this dose level were evaluable but >30% had DLT and >20% had febrile neutropenia. No DLT was observed in 11 patients treated at PM01183 3.0 mg FD/gemcitabine 800 mg/m(2), which was defined as the RD. This regimen was feasible and tolerable with manageable toxicity; mainly grade 3/4 myelosuppression. Non-hematological toxicity comprised fatigue, nausea, vomiting, and transaminases increases. Fifteen (33%) patients received ≥6 cycles with no cumulative hematological toxicity. Pharmacokinetic analysis showed no evidence of drug-drug interaction. Nine of 38 patients had response as per RECIST (complete [3%] and partial [21%]), for an overall response rate (ORR) of 24% (95% Confidence Interval [CI] 12-40%). Eleven patients (29%) had disease stabilization ≥4 months. Responses were durable (median of 8.5 months): overall median progression-free survival (PFS) was 4.2 months (95% CI, 2.7-6.5 months). Conclusions The RD for this combination is PM01183 3.0 mg FD (or 1.6 mg/m(2))/gemcitabine 800 mg/m(2) d1,8 q3wk. This schedule is well tolerated and has antitumor activity in several advanced solid tumor types
Chloride Nutrition Regulates development, Water Balance and Drought Resistance in Plants
6 páginas.-- 5 figuras.-- 9 referencias.-- Poster presentado en el XII Luso-Spanish Symposium on Plant Water Relations – Water to Feed the World. 30th of September – 3rd of October (Evora) PortugalCl- is a strange micronutrient since actual Cl- concentration in plants is about two orders of magnitude higher than the content required as essential micronutrient. This accumulation requires a high cost of energy, and since Cl- is a major osmotically active solute in the vacuole, we propose that Cl- plays a role in the regulation of water balance in plants. We show here that, when accumulated to macronutrient levels, Cl- specifically regulates leaf cell elongation and water balance parameters, improving water relations at both the leaf tissue and the whole plant levels, increasing drought resistance in higher plants.This work was supported by the Spanish Ministry of Science and Innovation-FEDER grant AGL2009-08339/AGR.Peer Reviewe
Composite Films of Arabinoxylan and Fibrous Sepiolite: Morphological, Mechanical, and Barrier Properties
Hemicelluloses represent a largely unutilized resource for future bioderived films in packaging and other applications. However, improvement of film properties is needed in order to transfer this potential into reality. In this context, sepiolite, a fibrous clay, was investigated as an additive to enhance the properties of rye flour arabinoxylan. Composite films cast from arabinoxylan solutions and sepiolite suspensions in water were transparent or semitransparent at additive loadings in the 2.5-10 wt % range. Scanning electron microscopy showed that the sepiolite was well dispersed in the arabinoxylan films and sepiolite fiber aggregation was not found. FT-IR spectroscopy provided some evidence for hydrogen bonding between sepiolite and arabinoxylan. Consistent with these findings, mechanical testing showed increases in film stiffness and strength with sepiolite addition and the effect of poly(ethylene glycol) methyl ether (mPEG) plasticizer addition. Incorporation of sepiolite did not significantly influence the thermal degradation or the gas barrier properties of arabinoxylan films, which is likely a consequence of sepiolite fiber morphology. In summary, sepiolite was shown to have potential as an additive to obtain stronger hemicellulose films although other approaches, possibly in combination with the use of sepiolite, would be needed if enhanced film barrier properties are required for specific applications.</p
Does the diurnal cycle of cortisol explain the relationship between physical performance and cognitive function in older adults?
Background
Regular physical activity is a promising strategy to treat and prevent cognitive decline. The mechanisms that mediate these benefits are not fully clear but physical activity is thought to attenuate the harmful effects of chronic psychological stress and hypercortisolism on cognition. However, the circadian pattern of cortisol secretion is complex and it is not known which aspects are most closely associated with increased cognitive function and better physical performance. This is the first study to simultaneously measure cognitive function, the diurnal cycle of salivary cortisol and physical performance in older adults, without cognitive impairment (n = 30) and with amnestic Mild Cognitive Impairment (aMCI) (n = 30).
Results
Regression analysis showed that better cognitive function was associated with better physical performance. A greater variance in cortisol levels across the day from morning to evening was associated with better cognitive function and physical performance.
Conclusions
The results support the idea that a more dynamic cortisol secretion pattern is associated with better cognitive function and physical performance even in the presence of cognitive impairment, but our results could not confirm a mediating role in this relationship
Novel methylselenoesters induce programed cell death via entosis in pancreatic cancer cells
Redox active selenium (Se) compounds have gained substantial attention in the last decade
as potential cancer therapeutic agents. Several Se compounds have shown high selectivity and
sensitivity against malignant cells. The cytotoxic effects are exerted by their biologically active
metabolites, with methylselenol (CH3SeH) being one of the key executors. In search of novel
CH3SeH precursors, we previously synthesized a series of methylselenoesters that were active
(GI50 < 10 µM at 72 h) against a panel of cancer cell lines. Herein, we refined the mechanism of action
of the two lead compounds with the additional synthesis of new analogs (ethyl, pentyl, and benzyl
derivatives). A novel mechanism for the programmed cell death mechanism for Se-compounds
was identified. Both methylseleninic acid and the novel CH3SeH precursors induced entosis by cell
detachment through downregulation of cell division control protein 42 homolog (CDC42) and its
downstream effector β1-integrin (CD29). To our knowledge, this is the first time that Se compounds
have been reported to induce this type of cell death and is of importance in the characterization of
the anticancerogenic properties of these compounds
Brain Structural Networks Associated with Intelligence and Visuomotor Ability
Increasing evidence indicates that multiple structures in the brain are associated with intelligence
and cognitive function at the network level. The association between the grey matter (GM) structural
network and intelligence and cognition is not well understood. We applied a multivariate approach
to identify the pattern of GM and link the structural network to intelligence and cognitive functions.
Structural magnetic resonance imaging was acquired from 92 healthy individuals. Source-based
morphometry analysis was applied to the imaging data to extract GM structural covariance. We
assessed the intelligence, verbal fluency, processing speed, and executive functioning of the
participants and further investigated the correlations of the GM structural networks with intelligence
and cognitive functions. Six GM structural networks were identified. The cerebello-parietal component
and the frontal component were significantly associated with intelligence. The parietal and frontal
regions were each distinctively associated with intelligence by maintaining structural networks with
the cerebellum and the temporal region, respectively. The cerebellar component was associated
with visuomotor ability. Our results support the parieto-frontal integration theory of intelligence by
demonstrating how each core region for intelligence works in concert with other regions. In addition,
we revealed how the cerebellum is associated with intelligence and cognitive functions
Identification of a novel quinoxaline-isoselenourea targeting the STAT3 pathway as a potential melanoma therapeutic
The prognosis for patients with metastatic melanoma remains very poor. Constitutive
signal transducer and activator of transcription 3 (STAT3) activation has been correlated to metastasis,
poor patient survival, larger tumor size, and acquired resistance against vemurafenib (PLX-4032),
suggesting its potential as a molecular target. We recently designed a series of isoseleno- and
isothio-urea derivatives of several biologically active heterocyclic scaffolds. The cytotoxic effects
of lead isoseleno- and isothio-urea derivatives (compounds 1 and 3) were studied in a panel of
five melanoma cell lines, including B-RAFV600E-mutant and wild-type (WT) cells. Compound 1
(IC50 range 0.8–3.8 µM) showed lower IC50 values than compound 3 (IC50 range 8.1–38.7 µM) and
the mutant B-RAF specific inhibitor PLX-4032 (IC50 ranging from 0.4 to >50 µM), especially at a
short treatment time (24 h). These effects were long-lasting, since melanoma cells did not recover
their proliferative potential after 14 days of treatment. In addition, we confirmed that compound 1
induced cell death by apoptosis using Live-and-Dead, Annexin V, and Caspase3/7 apoptosis assays.
Furthermore, compound 1 reduced the protein levels of STAT3 and its phosphorylation, as well as
decreased the expression of STAT3-regulated genes involved in metastasis and survival, such as
survivin and c-myc. Compound 1 also upregulated the cell cycle inhibitor p21. Docking studies
further revealed the favorable binding of compound 1 with the SH2 domain of STAT3, suggesting it
acts through STAT3 inhibition. Taken together, our results suggest that compound 1 induces apoptosis
by means of the inhibition of the STAT3 pathway, non-specifically targeting both B-RAF-mutant and
WT melanoma cells, with much higher cytotoxicity than the current therapeutic drug PLX-4032
Direct effects of climate change on productivity of European aquaculture
Aquaculture managers and industry must take into account the impact of climate change on production and environmental quality to ensure that sector growth is sustainable over the coming decades, a key requirement for food security. The potential effects of climate change on aquaculture range from changes to production capacity in existing cultivation areas to changes in the areas themselves, which may become unsuitable for particular species, but also suitable for new species. The prediction of where and how such changes may occur is challenging, not least because the cultivated species may themselves exhibit plasticity, which makes it difficult to forecast the degree to which different locations and culture types may be affected. This work presents a modelling approach used to predict the potential effects of climate change on aquaculture, considering six key finfish and shellfish species of economic importance in Europe: Atlantic salmon (Salmo salar), gilthead seabream (Sparus aurata), sea bass (Dicentrarchus labrax), Pacific oyster (Crassostrea gigas), blue mussel (Mytilus edulis) and Mediterranean mussel (Mytilus galloprovincialis). The focus is on effects on physiology, growth performance and environmental footprint, and the resultant economic impact at the farm scale. Climate projections for present-day conditions; mid-century (2040–2060) and end-of-century (2080–2100) were extracted from regionally downscaled global climate models and used to force bioenergetic models. For each of those time periods, two different carbon concentration scenarios were considered: a moderate situation (IPCC RCP 4.5) and an extreme situation (IPCC RCP 8.5). Projected temperature changes will have variable effects on growth depending on the species and geographic region. From the case studies analysed, gilthead bream farmed in sea cages in the western Mediterranean was the most vulnerable, whereas offshore-suspended mussel culture in SW Portugal was least affected. Most of the marine finfish simulated were projected to have decreased feeding efficiency in both mid-century and end-of-century climate scenarios. Bivalve shellfish showed a decreasing trend with respect to most productivity parameters as climate change progresses, under both emission scenarios. As a general trend across species and regions, economic uncertainty is expected to increase under all future projections
Durvalumab plus tremelimumab for the treatment of advanced neuroendocrine neoplasms of gastroenteropancreatic and lung origin
Single immune checkpoint blockade has shown limited activity in patients with neuroendocrine neoplasms (NENs). Here the authors report the results of a phase II clinical trial of durvalumab (anti-PD-L1) and tremelimumab (anti CTLA-4) in patients with advanced NENs of gastroenteropancreatic and lung origin. Single immune checkpoint blockade in advanced neuroendocrine neoplasms (NENs) shows limited efficacy; dual checkpoint blockade may improve treatment activity. Dune (NCT03095274) is a non-randomized controlled multicohort phase II clinical trial evaluating durvalumab plus tremelimumab activity and safety in advanced NENs. This study included 123 patients presenting between 2017 and 2019 with typical/atypical lung carcinoids (Cohort 1), G1/2 gastrointestinal (Cohort 2), G1/2 pancreatic (Cohort 3) and G3 gastroenteropancreatic (GEP) (Cohort 4) NENs; who progressed to standard therapies. Patients received 1500 mg durvalumab and 75 mg tremelimumab for up to 13 and 4 cycles (every 4 weeks), respectively. The primary objective was the 9-month clinical benefit rate (CBR) for cohorts 1-3 and 9-month overall survival (OS) rate for Cohort 4. Secondary endpoints included objective response rate, duration of response, progression-free survival according to irRECIST, overall survival, and safety. Correlation of PD-L1 expression with efficacy was exploratory. The 9-month CBR was 25.9%/35.5%/25% for Cohorts 1, 2, and 3 respectively. The 9-month OS rate for Cohort 4 was 36.1%, surpassing the futility threshold. Benefit in Cohort 4 was observed regardless of differentiation and Ki67 levels. PD-L1 combined scores did not correlate with treatment activity. Safety profile was consistent with that of prior studies. In conclusion, durvalumab plus tremelimumab is safe in NENs and shows modest survival benefit in G3 GEP-NENs; with one-third of these patients experiencing a prolonged OS
- …
