905 research outputs found

    Novel multiple sclerosis susceptibility loci implicated in epigenetic regulation

    Get PDF
    We conducted a genome-wide association study (GWAS) on multiple sclerosis (MS) susceptibility in German cohorts with 4888 cases and 10,395 controls. In addition to associations within the major histocompatibility complex (MHC) region, 15 non-MHC loci reached genome-wide significance. Four of these loci are novel MS susceptibility loci. They map to the genes L3MBTL3, MAZ, ERG, and SHMT1. The lead variant at SHMT1 was replicated in an independent Sardinian cohort. Products of the genes L3MBTL3, MAZ, and ERG play important roles in immune cell regulation. SHMT1 encodes a serine hydroxymethyltransferase catalyzing the transfer of a carbon unit to the folate cycle. This reaction is required for regulation of methylation homeostasis, which is important for establishment and maintenance of epigenetic signatures. Our GWAS approach in a defined population with limited genetic substructure detected associations not found in larger, more heterogeneous cohorts, thus providing new clues regarding MS pathogenesis

    Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use.

    Get PDF
    Tobacco and alcohol use are leading causes of mortality that influence risk for many complex diseases and disorders1. They are heritable2,3 and etiologically related4,5 behaviors that have been resistant to gene discovery efforts6-11. In sample sizes up to 1.2 million individuals, we discovered 566 genetic variants in 406 loci associated with multiple stages of tobacco use (initiation, cessation, and heaviness) as well as alcohol use, with 150 loci evidencing pleiotropic association. Smoking phenotypes were positively genetically correlated with many health conditions, whereas alcohol use was negatively correlated with these conditions, such that increased genetic risk for alcohol use is associated with lower disease risk. We report evidence for the involvement of many systems in tobacco and alcohol use, including genes involved in nicotinic, dopaminergic, and glutamatergic neurotransmission. The results provide a solid starting point to evaluate the effects of these loci in model organisms and more precise substance use measures

    Additive and interaction effects at three amino acid positions in HLA-DQ and HLA-DR molecules drive type 1 diabetes risk.

    Get PDF
    Variation in the human leukocyte antigen (HLA) genes accounts for one-half of the genetic risk in type 1 diabetes (T1D). Amino acid changes in the HLA-DR and HLA-DQ molecules mediate most of the risk, but extensive linkage disequilibrium complicates the localization of independent effects. Using 18,832 case-control samples, we localized the signal to 3 amino acid positions in HLA-DQ and HLA-DR. HLA-DQβ1 position 57 (previously known; P = 1 × 10(-1,355)) by itself explained 15.2% of the total phenotypic variance. Independent effects at HLA-DRβ1 positions 13 (P = 1 × 10(-721)) and 71 (P = 1 × 10(-95)) increased the proportion of variance explained to 26.9%. The three positions together explained 90% of the phenotypic variance in the HLA-DRB1-HLA-DQA1-HLA-DQB1 locus. Additionally, we observed significant interactions for 11 of 21 pairs of common HLA-DRB1-HLA-DQA1-HLA-DQB1 haplotypes (P = 1.6 × 10(-64)). HLA-DRβ1 positions 13 and 71 implicate the P4 pocket in the antigen-binding groove, thus pointing to another critical protein structure for T1D risk, in addition to the HLA-DQ P9 pocket.This research utilizes resources provided by the Type 1 Diabetes Genetics Consortium, a collaborative clinical study sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institute of Allergy and Infectious Diseases (NIAID), National Human Genome Research Institute (NHGRI), National Institute of Child Health and Human Development (NICHD), and Juvenile Diabetes Research Foundation International (JDRF) and supported by U01 DK062418. This work is supported in part by funding from the National Institutes of Health (5R01AR062886-02 (PIdB), 1R01AR063759 (SR), 5U01GM092691-05 (SR), 1UH2AR067677-01 (SR), R01AR065183 (PIWdB)), a Doris Duke Clinical Scientist Development Award (SR), the Wellcome Trust (JAT) and the National Institute for Health Research (JAT and JMMH), and a Vernieuwingsimpuls VIDI Award (016.126.354) from the Netherlands Organization for Scientific Research (PIWdB). TLL was supported by the German Research Foundation (LE 2593/1-1 and LE 2593/2-1).This is the accepted manuscript. The final version is available at http://www.nature.com/ng/journal/v47/n8/full/ng.3353.html

    Non-Invasive Neuromodulation Therapies for Parkinson’s Disease

    Get PDF
    Noninvasive brain stimulation (NIBS) technologies have been applied to study brain physiology and, more recently, have been recognized for their therapeutic potential as an adjunctive treatment for various neurologic and psychiatric disorders. Transcranial magnetic stimulation (TMS) and transcranial electric stimulation (tES) are two of the most studied NIBS modalities in Parkinson’s disease. They are non-systemic and relatively safe. Most therapeutic trials have been conducted to ameliorate motor symptoms of Parkinson’s disease (PD) with overall positive results using various stimulation modalities and methods. Notwithstanding significant results, evidence has not yet been compelling mainly due to small-size studies, lack of standardization of methodologies and other study design limitations. NIBS hold promise for treatment of PD symptoms and PD related complications. Large, well designed clinical trials are needed to corroborate these positive findings and inform its durability and the overall clinical relevance for the treatment of PD

    Geographic population structure analysis of worldwide human populations infers their biogeographical origins

    Get PDF
    The search for a method that utilizes biological information to predict humans’ place of origin has occupied scientists for millennia. Over the past four decades, scientists have employed genetic data in an effort to achieve this goal but with limited success. While biogeographical algorithms using next-generation sequencing data have achieved an accuracy of 700 km in Europe, they were inaccurate elsewhere. Here we describe the Geographic Population Structure (GPS) algorithm and demonstrate its accuracy with three data sets using 40,000–130,000 SNPs. GPS placed 83% of worldwide individuals in their country of origin. Applied to over 200 Sardinians villagers, GPS placed a quarter of them in their villages and most of the rest within 50 km of their villages. GPS’s accuracy and power to infer the biogeography of worldwide individuals down to their country or, in some cases, village, of origin, underscores the promise of admixture-based methods for biogeography and has ramifications for genetic ancestry testing

    Genome-wide analysis of BMI in adolescents and young adults reveals additional insight into the effects of genetic loci over the life course

    Get PDF
    Genetic loci for body mass index (BMI) in adolescence and young adulthood, a period of high risk for weight gain, are understudied, yet may yield important insight into the etiology of obesity and early intervention. To identify novel genetic loci and examine the influence of known loci on BMI during this critical time period in late adolescence and early adulthood, we performed a two-stage meta-analysis using 14 genome-wide association studies in populations of European ancestry with data on BMI between ages 16 and 25 in up to 29 880 individuals. We identified seven independent loci (P < 5.0 × 10−8) near FTO (P = 3.72 × 10−23), TMEM18 (P = 3.24 × 10−17), MC4R (P = 4.41 × 10−17), TNNI3K (P = 4.32 × 10−11), SEC16B (P = 6.24 × 10−9), GNPDA2 (P = 1.11 × 10−8) and POMC (P = 4.94 × 10−8) as well as a potential secondary signal at the POMC locus (rs2118404, P = 2.4 × 10−5 after conditioning on the established single-nucleotide polymorphism at this locus) in adolescents and young adults. To evaluate the impact of the established genetic loci on BMI at these young ages, we examined differences between the effect sizes of 32 published BMI loci in European adult populations (aged 18-90) and those observed in our adolescent and young adult meta-analysis. Four loci (near PRKD1, TNNI3K, SEC16B and CADM2) had larger effects and one locus (near SH2B1) had a smaller effect on BMI during adolescence and young adulthood compared with older adults (P < 0.05). These results suggest that genetic loci for BMI can vary in their effects across the life course, underlying the importance of evaluating BMI at different age
    corecore