90,377 research outputs found

    Joint and Competitive Caching Designs in Large-Scale Multi-Tier Wireless Multicasting Networks

    Get PDF
    Caching and multicasting are two promising methods to support massive content delivery in multi-tier wireless networks. In this paper, we consider a random caching and multicasting scheme with caching distributions in the two tiers as design parameters, to achieve efficient content dissemination in a two-tier large-scale cache-enabled wireless multicasting network. First, we derive tractable expressions for the successful transmission probabilities in the general region as well as the high SNR and high user density region, respectively, utilizing tools from stochastic geometry. Then, for the case of a single operator for the two tiers, we formulate the optimal joint caching design problem to maximize the successful transmission probability in the asymptotic region, which is nonconvex in general. By using the block successive approximate optimization technique, we develop an iterative algorithm, which is shown to converge to a stationary point. Next, for the case of two different operators, one for each tier, we formulate the competitive caching design game where each tier maximizes its successful transmission probability in the asymptotic region. We show that the game has a unique Nash equilibrium (NE) and develop an iterative algorithm, which is shown to converge to the NE under a mild condition. Finally, by numerical simulations, we show that the proposed designs achieve significant gains over existing schemes.Comment: 30 pages, 6 pages, submitted to IEEE GLOBECOM 2017 and IEEE Trans. Commo

    Ordering-sensitive and Semantic-aware Topic Modeling

    Full text link
    Topic modeling of textual corpora is an important and challenging problem. In most previous work, the "bag-of-words" assumption is usually made which ignores the ordering of words. This assumption simplifies the computation, but it unrealistically loses the ordering information and the semantic of words in the context. In this paper, we present a Gaussian Mixture Neural Topic Model (GMNTM) which incorporates both the ordering of words and the semantic meaning of sentences into topic modeling. Specifically, we represent each topic as a cluster of multi-dimensional vectors and embed the corpus into a collection of vectors generated by the Gaussian mixture model. Each word is affected not only by its topic, but also by the embedding vector of its surrounding words and the context. The Gaussian mixture components and the topic of documents, sentences and words can be learnt jointly. Extensive experiments show that our model can learn better topics and more accurate word distributions for each topic. Quantitatively, comparing to state-of-the-art topic modeling approaches, GMNTM obtains significantly better performance in terms of perplexity, retrieval accuracy and classification accuracy.Comment: To appear in proceedings of AAAI 201
    corecore