16,685 research outputs found

    Distributive Stochastic Learning for Delay-Optimal OFDMA Power and Subband Allocation

    Full text link
    In this paper, we consider the distributive queue-aware power and subband allocation design for a delay-optimal OFDMA uplink system with one base station, KK users and NFN_F independent subbands. Each mobile has an uplink queue with heterogeneous packet arrivals and delay requirements. We model the problem as an infinite horizon average reward Markov Decision Problem (MDP) where the control actions are functions of the instantaneous Channel State Information (CSI) as well as the joint Queue State Information (QSI). To address the distributive requirement and the issue of exponential memory requirement and computational complexity, we approximate the subband allocation Q-factor by the sum of the per-user subband allocation Q-factor and derive a distributive online stochastic learning algorithm to estimate the per-user Q-factor and the Lagrange multipliers (LM) simultaneously and determine the control actions using an auction mechanism. We show that under the proposed auction mechanism, the distributive online learning converges almost surely (with probability 1). For illustration, we apply the proposed distributive stochastic learning framework to an application example with exponential packet size distribution. We show that the delay-optimal power control has the {\em multi-level water-filling} structure where the CSI determines the instantaneous power allocation and the QSI determines the water-level. The proposed algorithm has linear signaling overhead and computational complexity O(KN)\mathcal O(KN), which is desirable from an implementation perspective.Comment: To appear in Transactions on Signal Processin

    Convergence-Optimal Quantizer Design of Distributed Contraction-based Iterative Algorithms with Quantized Message Passing

    Full text link
    In this paper, we study the convergence behavior of distributed iterative algorithms with quantized message passing. We first introduce general iterative function evaluation algorithms for solving fixed point problems distributively. We then analyze the convergence of the distributed algorithms, e.g. Jacobi scheme and Gauss-Seidel scheme, under the quantized message passing. Based on the closed-form convergence performance derived, we propose two quantizer designs, namely the time invariant convergence-optimal quantizer (TICOQ) and the time varying convergence-optimal quantizer (TVCOQ), to minimize the effect of the quantization error on the convergence. We also study the tradeoff between the convergence error and message passing overhead for both TICOQ and TVCOQ. As an example, we apply the TICOQ and TVCOQ designs to the iterative waterfilling algorithm of MIMO interference game.Comment: 17 pages, 9 figures, Transaction on Signal Processing, accepte

    Stochastic Content-Centric Multicast Scheduling for Cache-Enabled Heterogeneous Cellular Networks

    Full text link
    Caching at small base stations (SBSs) has demonstrated significant benefits in alleviating the backhaul requirement in heterogeneous cellular networks (HetNets). While many existing works focus on what contents to cache at each SBS, an equally important problem is what contents to deliver so as to satisfy dynamic user demands given the cache status. In this paper, we study optimal content delivery in cache-enabled HetNets by taking into account the inherent multicast capability of wireless medium. We consider stochastic content multicast scheduling to jointly minimize the average network delay and power costs under a multiple access constraint. We establish a content-centric request queue model and formulate this stochastic optimization problem as an infinite horizon average cost Markov decision process (MDP). By using \emph{relative value iteration} and special properties of the request queue dynamics, we characterize some properties of the value function of the MDP. Based on these properties, we show that the optimal multicast scheduling policy is of threshold type. Then, we propose a structure-aware optimal algorithm to obtain the optimal policy. We also propose a low-complexity suboptimal policy, which possesses similar structural properties to the optimal policy, and develop a low-complexity algorithm to obtain this policy.Comment: Accepted to IEEE Trans. on Wireless Communications (June 6, 2016). Conference version appears in ACM CoNEXT 2015 Workshop on Content Caching and Delivery in Wireless Networks (CCDWN
    corecore