218 research outputs found
Polymer Reptation in Disordered Media
The effect of ambient disorders and sequence heterogeneities on the reptation
of a long polymer is studied with the aid of a disordered tube model. The
dynamics of a random heteropolymer is found to be much slower than that of a
homopolymer due to collective pinning effects. The asymptotic properties belong
to the universality class of a directed path in (1+1)-dimensional random media.Comment: 4 pages, to appear in PRL; text, figures and related (p)reprints also
available at http://matisse.ucsd.edu/~hwa/pub.htm
Dynamical Properties of a Growing Surface on a Random Substrate
The dynamics of the discrete Gaussian model for the surface of a crystal
deposited on a disordered substrate is investigated by Monte Carlo simulations.
The mobility of the growing surface was studied as a function of a small
driving force and temperature . A continuous transition is found from
high-temperature phase characterized by linear response to a low-temperature
phase with nonlinear, temperature dependent response. In the simulated regime
of driving force the numerical results are in general agreement with recent
dynamic renormalization group predictions.Comment: 10 pages, latex, 3 figures, to appear in Phys. Rev. E (RC
Effects of mechanical strain on thermal denaturation of DNA
As sections of a strand duplexed DNA denature when exposed to high
temperature, the excess linking number is taken up by the undenatured portions
of the molecule. The mechanical energy that arises because of the overwinding
of the undenatured sections can, in principle, alter the nature of the thermal
denaturation process. Assuming that the strains associated with this
overwinding are not relieved, we find that a simple model of strain-altered
melting leads to a suppression of the melting transition when the unaltered
transition is continuous. When the melting transition is first order in the
absence of strain associated with overwinding, the modification is to a third
order phase transition.Comment: 4 pages, 5 figures, RevTe
Statistical mechanics of base stacking and pairing in DNA melting
We propose a statistical mechanics model for DNA melting in which base
stacking and pairing are explicitly introduced as distinct degrees of freedom.
Unlike previous approaches, this model describes thermal denaturation of DNA
secondary structure in the whole experimentally accessible temperature range.
Base pairing is described through a zipper model, base stacking through an
Ising model. We present experimental data on the unstacking transition,
obtained exploiting the observation that at moderately low pH this transition
is moved down to experimentally accessible temperatures. These measurements
confirm that the Ising model approach is indeed a good description of base
stacking. On the other hand, comparison with the experiments points to the
limitations of the simple zipper model description of base pairing.Comment: 13 pages with figure
New evidence for super-roughening in crystalline surfaces with disordered substrate
We study the behavior of the Binder cumulant related to long distance
correlation functions of the discrete Gaussian model of disordered substrate
crystalline surfaces. We exhibit numerical evidence that the non-Gaussian
behavior in the low- region persists on large length scales, in agreement
with the broken phase being super-rough.Comment: 10 pages and 4 figures, available at
http://chimera.roma1.infn.it/index_papers_complex.html . We have extended the
RG discussion and minor changes in the tex
Crystal surfaces with correlated disorder: Phase transitions between roughening and superroughening
A theory for surface transitions in the presence of a disordered pinning
potential is presented. Arbitrary disorder correlations are treated in the
framework of a dynamical functional renormalization group. The roughening
transition, where surface roughness and mobility behave discontinuously, is
shown to turn smoothly into the continuous superroughening transition, when the
range of disorder correlations is decreased. Implications for random-field
-models and vortex glasses are discussed.Comment: 13 pages with 2 figures, latex+revte
Roles of stiffness and excluded volume in DNA denaturation
The nature and the universal properties of DNA thermal denaturation are
investigated by Monte Carlo simulations. For suitable lattice models we
determine the exponent c describing the decay of the probability distribution
of denaturated loops of length l, . If excluded volume effects
are fully taken into account, c= 2.10(4) is consistent with a first order
transition. The stiffness of the double stranded chain has the effect of
sharpening the transition, if it is continuous, but not of changing its order
and the value of the exponent c, which is also robust with respect to inclusion
of specific base-pair sequence heterogeneities.Comment: RevTeX 4 Pages and 4 PostScript figures included. Final version as
publishe
Force fluctuation in a driven elastic chain
We study the dynamics of an elastic chain driven on a disordered substrate
and analyze numerically the statistics of force fluctuations at the depinning
transition. The probability distribution function of the amplitude of the slip
events for small velocities is a power law with an exponent
depending on the driving velocity. This result is in qualitative agreement with
experimental measurements performed on sliding elastic surfaces with
macroscopic asperities. We explore the properties of the depinning transition
as a function of the driving mode (i.e. constant force or constant velocity)
and compute the force-velocity diagram using finite size scaling methods. The
scaling exponents are in excellent agreement with the values expected in
interface models and, contrary to previous studies, we found no difference in
the exponents for periodic and disordered chains.Comment: 8 page
Effect of defects on thermal denaturation of DNA Oligomers
The effect of defects on the melting profile of short heterogeneous DNA
chains are calculated using the Peyrard-Bishop Hamiltonian. The on-site
potential on a defect site is represented by a potential which has only the
short-range repulsion and the flat part without well of the Morse potential.
The stacking energy between the two neigbouring pairs involving a defect site
is also modified. The results are found to be in good agreement with the
experiments.Comment: 11 pages including 5 postscript figure; To be appear in Phys. Rev.
- …
