2,230 research outputs found
Applying the Gini Coefficient to measure inequality of water use in the Olifants River water management area, South Africa
River basin management / Water stress / Water use / Indicators / Households / Rural areas / Irrigation programs / South Africa / Olifants River
Investigation of rising nitrate concentrations in groundwater in the Eden Valley, Cumbria: Phase 1 project scoping study
This is the Investigation of rising nitrate concentrations in groundwater in the Eden Valley, Cumbria report produced by the Environment Agency in 2003. This report focuses on groundwater nitrate concentrations in the Eden Valley. Most boreholes in the Eden Valley had nitrate concentrations less than 20 mg/l but a significant number had higher concentrations, some exceeding the EC maximum admissible concentration for drinking water of 50 mg/l. The main objectives of this report were to investigate the causes of rising nitrate concentrations in groundwater in the Permo-Triassic sandstone aquifers of the Eden Valley area and provide sufficient understanding of the groundwater and surface water flow system, including the sources of the nitrate contamination and the processes controlling nitrate movement, so that possible management options for reversing this trend can be considered
Interwell relaxation times in p-Si/SiGe asymmetric quantum well structures: the role of interface roughness
We report the direct determination of nonradiative lifetimes in Si∕SiGe asymmetric quantum well structures designed to access spatially indirect (diagonal) interwell transitions between heavy-hole ground states, at photon energies below the optical phonon energy. We show both experimentally and theoretically, using a six-band k∙p model and a time-domain rate equation scheme, that, for the interface quality currently achievable experimentally (with an average step height ⩾1 Å), interface roughness will dominate all other scattering processes up to about 200 K. By comparing our results obtained for two different structures we deduce that in this regime both barrier and well widths play an important role in the determination of the carrier lifetime. Comparison with recently published experimental and theoretical data obtained for mid-infrared GaAs∕AlxGa1−xAs multiple quantum well systems leads us to the conclusion that the dominant role of interface roughness scattering at low temperature is a general feature of a wide range of semiconductor heterostructures not limited to IV-IV material
Thermal effects on electron-phonon interaction in silicon nanostructures
Raman spectra from silicon nanostructures, recorded using excitation laser
power density of 1.0 kW/cm^2, is employed here to reveal the dominance of
thermal effects at temperatures higher than the room temperature. Room
temperature Raman spectrum shows only phonon confinement and Fano effects.
Raman spectra recorded at higher temperatures show increase in FWHM and
decrease in asymmetry ratio with respect to its room temperature counterpart.
Experimental Raman scattering data are analyzed successfully using theoretical
Raman line-shape generated by incorporating the temperature dependence of
phonon dispersion relation. Experimental and theoretical temperature dependent
Raman spectra are in good agreement. Although quantum confinement and Fano
effects persists, heating effects start dominating at higher temperatures than
room tempaerature.Comment: 9 Pages, 3 Figures and 1 Tabl
Seventy years of sex education in Health Education Journal: a critical review
This paper examines key debates and perspectives on sex education in Health Education Journal (HEJ), from the date of the journal’s first publication in March 1943 to the present day. Matters relating to sexuality and sexual health are revealed to be integral to HEJ’s history. First published as Health and Empire (1921 – 1942), a key purpose of the journal since its inception has been to share information on venereal disease and its prevention within the UK and across the former British Empire. From 1943 to the present day, discussions on sex education in the newly-christened HEJ both reflect and respond to evolving socio-cultural attitudes towards sexuality in the UK. Changing definitions of sex education across the decades are examined, from the prevention of venereal disease and moral decline in war-time Britain in the 1940s, to a range of responses to sexual liberation in the 1960s and 1970s; from a focus on preventing sexually-transmitted infections, teenage pregnancy and HIV in the 1980s, to the provision of sexual health services alongside sex education in the 2000s. Over the past 70 years, a shift from prevention of pre-marital sexual activity to the management of its outcomes is apparent; however, while these changes over time are notable, perhaps the most striking findings of this review are the continuities in arguments for and against the discussion of sexual issues. After more than 70 years of debate, it would seem that there is little consensus concerning motivations for and the content of sex education
Identification of crop cultivars with consistently high lignocellulosic sugar release requires the use of appropriate statistical design and modelling
Background In this study, a multi-parent population of barley cultivars was grown in the field for two consecutive years and then straw saccharification (sugar release by enzymes) was subsequently analysed in the laboratory to identify the cultivars with the highest consistent sugar yield. This experiment was used to assess the benefit of accounting for both the multi-phase and multi-environment aspects of large-scale phenotyping experiments with field-grown germplasm through sound statistical design and analysis. Results Complementary designs at both the field and laboratory phases of the experiment ensured that non-genetic sources of variation could be separated from the genetic variation of cultivars, which was the main target of the study. The field phase included biological replication and plot randomisation. The laboratory phase employed re-randomisation and technical replication of samples within a batch, with a subset of cultivars chosen as duplicates that were randomly allocated across batches. The resulting data was analysed using a linear mixed model that incorporated field and laboratory variation and a cultivar by trial interaction, and ensured that the cultivar means were more accurately represented than if the non-genetic variation was ignored. The heritability detected was more than doubled in each year of the trial by accounting for the non-genetic variation in the analysis, clearly showing the benefit of this design and approach. Conclusions The importance of accounting for both field and laboratory variation, as well as the cultivar by trial interaction, by fitting a single statistical model (multi-environment trial, MET, model), was evidenced by the changes in list of the top 40 cultivars showing the highest sugar yields. Failure to account for this interaction resulted in only eight cultivars that were consistently in the top 40 in different years. The correspondence between the rankings of cultivars was much higher at 25 in the MET model. This approach is suited to any multi-phase and multi-environment population-based genetic experiment
Coexistence and Survival in Conservative Lotka-Volterra Networks
Analyzing coexistence and survival scenarios of Lotka-Volterra (LV) networks in which the total biomass is conserved is of vital importance for the characterization of long-term dynamics of ecological communities. Here, we introduce a classification scheme for coexistence scenarios in these conservative LV models and quantify the extinction process by employing the Pfaffian of the network's interaction matrix. We illustrate our findings on global stability properties for general systems of four and five species and find a generalized scaling law for the extinction time
Energetics and atomic mechanisms of dislocation nucleation in strained epitaxial layers
We study numerically the energetics and atomic mechanisms of misfit
dislocation nucleation and stress relaxation in a two-dimensional atomistic
model of strained epitaxial layers on a substrate with lattice misfit.
Relaxation processes from coherent to incoherent states for different
transition paths are studied using interatomic potentials of Lennard-Jones type
and a systematic saddle point and transition path search method. The method is
based on a combination of repulsive potential minimization and the Nudged
Elastic Band method. For a final state with a single misfit dislocation, the
minimum energy path and the corresponding activation barrier are obtained for
different misfits and interatomic potentials. We find that the energy barrier
decreases strongly with misfit. In contrast to continuous elastic theory, a
strong tensile-compressive asymmetry is observed. This asymmetry can be
understood as manifestation of asymmetry between repulsive and attractive
branches of pair potential and it is found to depend sensitively on the form of
the potential.Comment: 11 pages, 9 figures, to appear in Phys. Rev.
Spectroscopic investigation of quantum confinement effects in ion implanted silicon-on-sapphire films
Crystalline Silicon-on-Sapphire (SOS) films were implanted with boron (B)
and phosphorous (P) ions. Different samples, prepared by varying the ion
dose in the range to 5 x and ion energy in the range
150-350 keV, were investigated by the Raman spectroscopy, photoluminescence
(PL) spectroscopy and glancing angle x-ray diffraction (GAXRD). The Raman
results from dose dependent B implanted samples show red-shifted and
asymmetrically broadened Raman line-shape for B dose greater than
ions cm. The asymmetry and red shift in the Raman line-shape is
explained in terms of quantum confinement of phonons in silicon nanostructures
formed as a result of ion implantation. PL spectra shows size dependent visible
luminescence at 1.9 eV at room temperature, which confirms the presence
of silicon nanostructures. Raman studies on P implanted samples were also
done as a function of ion energy. The Raman results show an amorphous top SOS
surface for sample implanted with 150 keV P ions of dose 5 x ions
cm. The nanostructures are formed when the P energy is increased to
350 keV by keeping the ion dose fixed. The GAXRD results show consistency with
the Raman results.Comment: 9 Pages, 6 Figures and 1 Table, \LaTex format To appear in
SILICON(SPRINGER
- …
