24 research outputs found

    Impact of malnutrition on immunity and infection

    Get PDF
    Malnutrition may be a consequence of energy deficit or micronutrient deficiency. It is considered the most relevant risk factor for illness and death, particularly in developing countries. In this review we described the magnitude of this problem, as well as its direct effect on the immune system and how it results in higher susceptibility to infections. A special emphasis was given to experimental models used to investigate the relationship between undernutrition and immunity. Malnutrition is obviously a challenge that must be addressed to health authorities and the scientific community

    Comparison of methods for the detection of biofilm production in coagulase-negative staphylococci

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ability of biofilm formation seems to play an essential role in the virulence of coagulase-negative staphylococci (CNS). The most clearly characterized component of staphylococcal biofilms is the polysaccharide intercellular adhesin (PIA) encoded by the <it>icaADBC </it>operon. Biofilm production was studied in 80 coagulase-negative staphylococci (CNS) strains isolated from clinical specimens of newborns with infection hospitalized at the Neonatal Unit of the University Hospital, Faculty of Medicine of Botucatu, and in 20 isolates obtained from the nares of healthy individuals without signs of infection. The objective was to compare three phenotypic methods with the detection of the <it>icaA</it>, <it>icaD </it>and <it>icaC </it>genes by PCR.</p> <p>Findings</p> <p>Among the 100 CNS isolates studied, 82% tested positive by PCR, 82% by the tube test, 81% by the TCP assay, and 73% by the CRA method. Using PCR as a reference, the tube test showed the best correlation with detection of the <it>ica </it>genes, presenting high sensitivity and specificity.</p> <p>Conclusions</p> <p>The tube adherence test can be indicated for the routine detection of biofilm production in CNS because of its easy application and low cost and because it guarantees reliable results with excellent sensitivity and specificity.</p

    High prevalence of methicillin resistant Staphylococcus aureus in the surgical units of Mulago hospital in Kampala, Uganda

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is limited data on Methicillin resistant <it>Staphylococcus aureus </it>(MRSA) in Uganda where, as in most low income countries, the routine use of chromogenic agar for MRSA detection is not affordable. We aimed to determine MRSA prevalence among patients, healthcare workers (HCW) and the environment in the burns units at Mulago hospital, and compare the performance of CHROMagar with oxacillin for detection of MRSA.</p> <p>Results</p> <p>One hundred samples (from 25 patients; 36 HCW; and 39 from the environment, one sample per person/item) were cultured for the isolation of <it>Staphylococcus aureus</it>. Forty one <it>S. aureus </it>isolates were recovered from 13 patients, 13 HCW and 15 from the environment, all of which were oxacillin resistant and <it>mecA/femA/nuc</it>-positive. MRSA prevalence was 46% (41/89) among patients, HCW and the environment, and 100% (41/41) among the isolates. For CHROMagar, MRSA prevalence was 29% (26/89) among patients, HCW and the environment, and 63% (26/41) among the isolates. There was high prevalence of multidrug resistant isolates, which concomitantly possessed virulence and antimicrobial resistance determinants, notably biofilms, hemolysins, toxin and <it>ica </it>genes. One isolate positive for all determinants possessed the <it>bhp </it>homologue which encodes the biofilm associated protein (BAP), a rare finding in human isolates. SCC<it>mec </it>type I was the most common at 54% prevalence (22/41), followed by <it>SCCmec </it>type V (15%, 6/41) and <it>SCCmec </it>type IV (7%, 3/41). <it>SCCmec </it>types II and III were not detected and 10 isolates (24%) were non-typeable.</p> <p>Conclusions</p> <p>Hyper-virulent methicillin resistant <it>Staphylococcus aureus </it>is prevalent in the burns unit of Mulago hospital.</p

    Comparison of methods for the identification of microorganisms isolated from blood cultures

    Full text link
    BACKGROUND: Bloodstream infections are responsible for thousands of deaths each year. The rapid identification of the microorganisms causing these infections permits correct therapeutic management that will improve the prognosis of the patient. In an attempt to reduce the time spent on this step, microorganism identification devices have been developed, including the VITEK(®) 2 system, which is currently used in routine clinical microbiology laboratories. METHODS: This study evaluated the accuracy of the VITEK(®) 2 system in the identification of 400 microorganisms isolated from blood cultures and compared the results to those obtained with conventional phenotypic and genotypic methods. In parallel to the phenotypic identification methods, the DNA of these microorganisms was extracted directly from the blood culture bottles for genotypic identification by the polymerase chain reaction (PCR) and DNA sequencing. RESULTS: The automated VITEK(®) 2 system correctly identified 94.7 % (379/400) of the isolates. The YST and GN cards resulted in 100 % correct identifications of yeasts (15/15) and Gram-negative bacilli (165/165), respectively. The GP card correctly identified 92.6 % (199/215) of Gram-positive cocci, while the ANC card was unable to correctly identify any Gram-positive bacilli (0/5). CONCLUSIONS: The performance of the VITEK(®) 2 system was considered acceptable and statistical analysis showed that the system is a suitable option for routine clinical microbiology laboratories to identify different microorganisms

    Reduced susceptibility to vancomycin and biofilm formation in methicillin-resistant Staphylococcus epidermidis isolated from blood cultures

    Full text link
    This study aimed to correlate the presence of ica genes, biofilm formation and antimicrobial resistance in 107 strains of Staphylococcus epidermidis isolated from blood cultures. The isolates were analysed to determine their methicillin resistance, staphylococcal cassette chromosome mec (SCCmec) type, ica genes and biofilm formation and the vancomycin minimum inhibitory concentration (MIC) was measured for isolates and subpopulations growing on vancomycin screen agar. The mecA gene was detected in 81.3% of the S. epidermidis isolated and 48.2% carried SCCmec type III. The complete icaADBC operon was observed in 38.3% of the isolates; of these, 58.5% produced a biofilm. Furthermore, 47.7% of the isolates grew on vancomycin screen agar, with an increase in the MIC in 75.9% of the isolates. Determination of the MIC of subpopulations revealed that 64.7% had an MIC ≥ 4 μg mL-1, including 15.7% with an MIC of 8 μg mL-1 and 2% with an MIC of 16 μg mL-1. The presence of the icaADBC operon, biofilm production and reduced susceptibility to vancomycin were associated with methicillin resistance. This study reveals a high level of methicillin resistance, biofilm formation and reduced susceptibility to vancomycin in subpopulations of S. epidermidis. These findings may explain the selection of multidrug-resistant isolates in hospital settings and the consequent failure of antimicrobial treatment.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Universidade Estadual Paulista Instituto de Biociências de Botucatu Departamento de Microbiologia e ImunologiaUniversidade Estadual Paulista Instituto de Biociências de Botucatu Departamento de Microbiologia e Imunologi

    Bacterial biofilms with emphasis on coagulase-negative staphylococci

    Get PDF
    In addition to their capacity to attach to surfaces, various groups of microorganisms also produce an extracellular polymeric substance known as "slime". This slime forms a thin layer around cells known as biofilm. Thus, biofilm structure comprises bacterial cells and an extracellular polymeric substance. It also presents a defined architecture, providing the microorganisms with an excellent protective environment and favoring the exchange of genetic material between cells as well as intercellular communication. The ability to produce biofilm is observed in a large group of bacteria, including coagulase-negative staphylococci (CNS) which are the predominant microorganisms of normal skin flora and have been implicated as the causative agents of hospital infections. Bacteremia caused by these agents is common in immunodepressed persons, in patients with cancer, in adult and neonatal intensive care units (ICU) and in patients using catheters or other prosthetic devices. The pathogenicity of CNS infections is probably related to the production of slime, which adheres preferentially to plastic and smooth surfaces, forming a biofilm that protects against attacks from the immune system and against antibiotic treatment, a fact hindering the eradication of these infections. The main objective of the present review was to describe basic and genetic aspects of biofilm formation and methods for its detection, with emphasis on biofilm creation by CNS and its relationship with diseases caused by these microorganisms which are becoming increasingly more frequent in the hospital environment

    Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA): molecular background, virulence, and relevance for public health

    Get PDF
    Staphylococcus aureus and coagulase-negative Staphylococcus (CoNS) are frequently found in nosocomial environments as the main pathogen in several infections. In 1961, reports of nosocomial S. aureus resistant to methicillin, the drug of choice against penicillin-resistant strains, required new alternatives and vancomycin started being used to treat infections caused by methicillin-resistant S. aureus (MRSA). Community-acquired methicillin-resistant S. aureus (CA-MRSA) was first reported in 1990 affecting patients without risk factors for infection with MRSA of hospital origin. MRSA of community origin harbor the genes responsible for the synthesis of Panton-Valentine leukocidin (PVL), a toxin associated with skin and soft tissue infections and that carries the staphylococcal cassette chromosome mec (SCCmec) type IV. CA-MRSA emergence has caused great impact on the worldwide medical community since the presence of this pathogen in patients without risk factors represents a high risk to public health

    Comparison of methods for the identification of coagulase-negative staphylococci

    No full text
    Coagulase-negative staphylococci (CNS) species identification is still difficult for most clinical laboratories. The scheme proposed by Kloos and Schleifer and modified by Bannerman is the reference method used for the identification of staphylococcal species and subspecies; however, this method is relatively laborious for routine use since it requires the utilization of a large number of biochemical tests. The objective of the present study; was to compare four methods, i.e., the reference method, the API Staph system (bioMerieux) and two methods modifed from the reference method in our laboratory (simplified method and disk method), in the identification of 100 CNS strains. Compared to the reference method, the simplified method and disk method correctly identifed 100 and 99 % of the CNS species, respectively, while this rate was 84 % for the AN Staph system. Inaccurate identification by the API Staph method was observed for Staphylococcus epidermidis (2.2 %), S. hominis (25 %). S. haemolyticus (37.5 %). and S. warned (47.1 %). The simplified method using the simple identification scheme proposed in the present study was found to be efficient for all strains tested, with 100 % sensitivity and specificity and proved to be available alternative for the identification of staphylococci, offering, higher reliability and lower cost than the currently available commercial systems. This method would be very useful in clinical microbiology laboratory, especially in places with limited resources.Univ Estadual Paulista, Inst Biociencias, Dept Microbiol & Imunol, BR-18618000 Botucatu, SP, BrazilUniv Estadual Paulista, Inst Biociencias, Dept Bioestatist, BR-18618000 Botucatu, SP, BrazilUniv Estadual Paulista, Inst Biociencias, Dept Microbiol & Imunol, BR-18618000 Botucatu, SP, BrazilUniv Estadual Paulista, Inst Biociencias, Dept Bioestatist, BR-18618000 Botucatu, SP, Brazi
    corecore