151 research outputs found
Specific and generic stem biomass and volume models of tree species in a West African tropical semi-deciduous forest
The quantification of the contribution of tropical forests to global carbon stocks and climate change mitigation requires availability of data and tools such as allometric equations. This study made available volume and biomass models for eighteen tree species in a semi-deciduous tropical forest in West Africa. Generic models were also developed for the forest ecosystem, and basic wood density determined for the tree species. Non-destructive sampling approach was carried out on five hundred and one sample trees to analyse stem volume and biomass. From the modelling of volume and biomass as functions of diameter at breast height (Dbh) and stem height, logarithmic models had better predictive capabilities. The model validation showed that in absence of data on height, models using Dbh only as variable was an alternative. The comparison of basic wood densities to data published in literature enabled to conclude that the non-destructive sampling was a good approach to determining reliable basic wood density. The comparative analysis of species-specific models in this study with selected generic models for tropical forests indicated low probability to identify effective generic models with good predictive ability for biomass. Given tree species richness of tropical forests, the study demonstrated the hypothesis that species-specific models are preferred to generic models, and concluded that further research should be oriented towards development of specific models to cover the full range of dominant tree species of African forests.</ja:p
Wild meat consumption in urban Sierra Leone during the Covid-19 pandemic
Wild meat is associated with an increased risk of zoonotic diseases. In some West African countries wild meat consumption declined as the result of official restrictions following Ebola outbreaks during 2013–2016, and was also affected by the current Covid-19 pandemic. In Sierra Leone, a country affected by these diseases, we documented wild meat use in four markets in the capital, Freetown. From a total of 197 interviews, we analysed the influence of age and gender on the types of wild meat eaten and the reasons for their consumption. We found that more men than women consumed wild meat, and for both genders taste was the main reason for eating wild meat. Age did not affect wild meat consumption amongst women. Evidence for changes in consumer behaviour in response to zoonotic disease risk was mixed. Although some consumers avoided wild meat because of disease risk, none stated this was the primary reason for not eating wild meat, and monkeys (presumed to carry a high zoonotic disease risk) were amongst the species cited as being consumed often. More work is needed to identify the best pathway towards safe and sustainable consumption of wild meat in urban Sierra Leone
Correction: Variation of virulence of five Aspergillus fumigatus isolates in four different infection models
The sixth author’s name is spelled incorrectly. The correct name is: F. Hillmann. The correct citation is: Keizer EM, Valdes ID, Forn-Cuni G, Klijn E, Meijer AH, Hillmann F, et al. (2021) Variation of virulence of five Aspergillus fumigatus isolates in four different infection models. PLoS ONE 16(7): e0252948. https://doi.org/10.1371/journal.pone.0252948Animal science
Carbon recovery in secondary forests: Insights from three West African countries
Despite the potential of secondary tropical forests to store and sequester substantial amounts of carbon, little is known about their above-ground carbon (AGC) stocks and the factors affecting them, especially in West Africa. This information is of key importance if the countries in this region want to achieve their forest restoration and climate mitigation commitments. To fill in this gap, we investigated how environmental and local management (e.g. remnant trees) factors influenced AGC and tree species richness in secondary forests at seven sites across Guinea, Sierra Leone and Liberia. We established 140 plots (20 x 50 m) in fallows <15 years (20 plots per site) and sampled all trees ≥10 cm diameter following standardised protocols. We found that AGC stocks and tree species richness increased with fallow age, but were highly variable across sites driven by both climatic and local management practices. While drought stress negatively affected AGC, remnant trees had a positive effect. AGC recovery rates ranged between 0.72 Mg C ha−1 y−1 (second driest site) and 13.76 Mg C ha−1 y−1 (wettest site). Given its low cost, our findings highlight the potential of passive restoration in secondary forests for carbon sequestration, particularly in wetter landscapes and areas with remnant trees from prior land use
Variation of virulence of five Aspergillus fumigatus isolates in four different infection models
Conidia of Aspergillus fumigatus are inhaled by humans on daily basis. As a consequence, these conidia can cause infections that differ in severity ranging from allergic bronchopulmonary aspergillosis to invasive aspergillosis. In this study we compared virulence of five A. fumigatus isolates in four different infection models to address the predictive value of different model systems. Two of the A. fumigatus strains were isolated from dogs with a non-invasive sino-nasal aspergillosis (DTO271-B5 and DTO303-F3), while three strains were isolated from human patients with invasive aspergillosis (Af293, ATCC46645 and CEA10). Infection models used encompassed cultured type II A549 lung epithelial cells, Protostelium aurantium amoeba, Galleria melonella larvae and zebrafish embryos. No major differences in virulence between these five strains were observed in the lung epithelial cell model. In contrast, strain ATCC46645 was most virulent in the amoeba and zebrafish model, whereas it was much less virulent in the Galleria infection model. DTO303-F3 was most virulent in the latter model. In general, reference strain Af293 was less virulent as compared to the other strains. Genome sequence analysis showed that this latter strain differed from the other four strains in 136 SNPs in virulence-related genes. Together, our results show that virulence of individual A. fumigatus strains show significant differences between infection models. We conclude that the predictive value of different model systems varies since the relative virulence across fungal strains does not hold up across different infection model systems.Animal science
Social Perceptions of Forest Ecosystem Services in the Democratic Republic of Congo
The forests of the Albertine Rift are known for their high biodiversity and the important ecosystem services they provide to millions of inhabitants. However, their conservation and the maintenance of ecosystem service delivery is a challenge, particularly in the Democratic Republic of the Congo. Our research investigates how livelihood strategy and ethnicity affects local perceptions of forest ecosystem services. We collected data through 25 focus-group discussions in villages from distinct ethnic groups, including farmers (Tembo, Shi, and Nyindu) and hunter-gatherers (Twa). Twa identify more food-provisioning services and rank bush meat and honey as the most important. They also show stronger place attachment to the forest than the farmers, who value other ecosystem services, but all rank microclimate regulation as the most important. Our findings help assess ecosystem services trade-offs, highlight the important impacts of restricted access to forests resources for Twa, and point to the need for developing alternative livelihood strategies for these communities
Resistance of African tropical forests to an extreme climate anomaly.
The responses of tropical forests to environmental change are critical uncertainties in predicting the future impacts of climate change. The positive phase of the 2015-2016 El Niño Southern Oscillation resulted in unprecedented heat and low precipitation in the tropics with substantial impacts on the global carbon cycle. The role of African tropical forests is uncertain as their responses to short-term drought and temperature anomalies have yet to be determined using on-the-ground measurements. African tropical forests may be particularly sensitive because they exist in relatively dry conditions compared with Amazonian or Asian forests, or they may be more resistant because of an abundance of drought-adapted species. Here, we report responses of structurally intact old-growth lowland tropical forests inventoried within the African Tropical Rainforest Observatory Network (AfriTRON). We use 100 long-term inventory plots from six countries each measured at least twice prior to and once following the 2015-2016 El Niño event. These plots experienced the highest temperatures and driest conditions on record. The record temperature did not significantly reduce carbon gains from tree growth or significantly increase carbon losses from tree mortality, but the record drought did significantly decrease net carbon uptake. Overall, the long-term biomass increase of these forests was reduced due to the El Niño event, but these plots remained a live biomass carbon sink (0.51 ± 0.40 Mg C ha-1 y-1) despite extreme environmental conditions. Our analyses, while limited to African tropical forests, suggest they may be more resistant to climatic extremes than Amazonian and Asian forests
- …
