4,320 research outputs found

    Jet Production at RHIC and LHC

    Full text link
    Recent results on jet production in heavy ion collisions at RHIC and the LHC are discussed, with emphasis on inclusive jet yields and semi-inclusive hadron-triggered and vector boson-triggered recoil jet yields as well as their azimuthal angular correlations. I will also discuss the constraints that these observables impose on the opacity of the medium, the flavour dependence of energy loss, the interplay of perturbative and non perturbative effects and the change of the degrees of freedom of the medium with the resolution of the probe.Comment: 8 pages, 7 figures, proceedings of Quark Matter 2017 conferenc

    An analysis of the influence of background subtraction and quenching on jet observables in heavy-ion collisions

    Full text link
    Subtraction of the large background in reconstruction is a key ingredient in jet studies in high-energy heavy-ion collisions at RHIC and the LHC. Here we address the question to which extent the most commonly used subtraction techniques are able to eliminate the effects of the background on the most commonly discussed observables at present: single inclusive jet distributions, dijet asymmetry and azimuthal distributions. We consider two different background subtraction methods, an area-based one implemented through the FastJet pack- age and a pedestal subtraction method, that resemble the ones used by the experimental collaborations at the LHC. We also analyze different ways of defining the optimal parame- ters in the second method. We use a toy model that easily allows variations of the background characteristics: average background level and fluctuations and azimuthal structure, but cross- checks are also done with a Monte Carlo simulator. Furthermore, we consider the influence of quenching using Q-PYTHIA on the dijet observables with the different background subtrac- tion methods and, additionally, we examine the missing momentum of particles. The average background level and fluctuations affect both single inclusive spectra and dijet asymmetries, although differently for different subtraction setups. A large azimuthal modulation of the background has a visible effect on the azimuthal dijet distributions. Quenching, as imple- mented in Q-PYTHIA, substantially affects the dijet asymmetry but little the azimuthal dijet distributions. Besides, the missing momentum characteristics observed in the experiment are qualitatively reproduced by Q-PYTHIA.Comment: 29 pages, 43 figures Accepted by JHE

    Background subtraction and jet quenching on jet reconstruction

    Full text link
    In order to assess the ability of jet observables to constrain the characteristics of the medium produced in heavy-ion collisions at the LHC, we investigate the influence of background subtraction and jet quenching on jet reconstruction, with focus on the dijet asymmetry as currently studied by ATLAS and CMS. Using a toy model, we examine the influence of different background subtraction methods on dijet momentum imbalance and azimuthal distributions. We compare the usual jet-area based background subtraction technique and a variant of the noise-pedestal subtraction method used by CMS. The purpose of this work is to understand what are the differences between the two techniques, given the same event configuration. We analyze the influence of the quenching effect using the Q-PYTHIA Monte Carlo on the previous observables and to what extent Q-PYTHIA is able to reproduce the CMS data for the average missing transverse momentum that seems to indicate the presence of large angle emission of soft particles.Comment: 4 pages, 3 figures, Proceedings for Hard Probes 201

    Particle production azimuthal asymmetries in a clustering of color sources model

    Full text link
    The collective interactions of many partons in the first stage of the collisions is the usual accepted explanation of the sizable elliptical flow. The clustering of color sources provides a framework of partonic interactions. In this scheme, we show a reasonable agreement with RHIC data for pT<1.5 GeV/c in both the dependence of v2 transverse momentum and in the shape of the nuclear modified factor on the azimuthal angle for different centralities. We show the predictions at LHC energies for Pb-Pb. In the case of proton-proton collisions a sizable v2 is obtained at this energy.Comment: To appear in Journal of Physics

    Investigation of high pt_{t} events in Nucleus-Nucleus collisions using the Hijing event generator

    Full text link
    In recent years lot of interest has been observed in the nucleus-nucleus collisions at RHIC energies in phenomena related to high ptp_{t} physics \cite{ref1}. The suppression of high ptp_{t} particles and disappearance of back-to-back jets compared to the scaling with number of binary nucleon-nucleon collisions indicates that a nearly perfect liquid is produced in these collisions. Results on self shadowing of high ptp_{t} events are presented using hadron multiplicity associated to high ptp_{t} and unbiased events in nucleus-nucleus collisions \cite{ref2} obtained from the hijing event generator.Comment: 4 pages, 3 figures, Proceedings of the poster presented at Quark Matter 200

    Torqued fireballs in relativistic heavy-ion collisions

    Full text link
    We show that the fluctuations in the wounded-nucleon model of the initial stage of relativistic heavy-ion collisions, together with the natural assumption that the forward (backward) moving wounded nucleons emit particles preferably in the forward (backward) direction, lead to an event-by-event torqued fireball. The principal axes associated with the transverse shape are rotated in the forward region in the opposite direction than in the backward region. On the average, the standard deviation of the relative torque angle between the forward and backward rapidity regions is about 20deg for the central and 10deg for the mid-peripheral collisions. The hydrodynamic expansion of a torqued fireball leads to a torqued collective flow, yielding, in turn, torqued principal axes of the transverse-momentum distributions at different rapidities. We propose experimental measures, based on cumulants involving particles in different rapidity regions, which should allow for a quantitative determination of the effect from the data. To estimate the non-flow contributions from resonance decays we run Monte Carlo simulations with THERMINATOR. If the event-by-event torque effect is found in the data, it will support the assumptions concerning the fluctuations in the early stage of the fireball formation, as well as the hypothesis of the asymmetric rapidity shape of the emission functions of the moving sources in the nucleus-nucleus collisions.Comment: Grant reference adde

    Monte Carlo for Jet Showers in the Medium

    Full text link
    The most commonly employed formalisms of radiative energy loss have been derived in the high- energy approximation. In its present form, it is reliable only for the medium modifications of inclusive particle spectra. Modifications to this formalism are expected to be important for less inclusive measurements. This is especially relevant for reconstructed jets in heavy-ion collisions, which are becoming available only recently. We present some ideas to overcome this limitation. Specifically, we show an implementation of radiative energy loss within a jet parton shower. This implementation has been done within the PYTHIA Monte Carlo event generator. We present the publicly available routine Q-PYTHIA and discuss some of the obtained physics results.Comment: 4 pages, 1 figures - To appear in the conference proceedings for Quark Matter 2009, March 30 - April 4, Knoxville, Tennessee. Final version with minor typos correcte
    corecore