1,913 research outputs found

    Clustering properties of ultrahigh energy cosmic rays and the search for their astrophysical sources

    Full text link
    The arrival directions of ultrahigh energy cosmic rays (UHECRs) may show anisotropies on all scales, from just above the experimental angular resolution up to medium scales and dipole anisotropies. We find that a global comparison of the two-point auto-correlation function of the data with the one of catalogues of potential sources is a powerful diagnostic tool. In particular, this method is far less sensitive to unknown deflections in magnetic fields than cross-correlation studies while keeping a strong discrimination power among source candidates. We illustrate these advantages by considering ordinary galaxies, gamma ray bursts and active galactic nuclei as possible sources. Already the sparse publicly available data suggest that the sources of UHECRs may be a strongly clustered sub-sample of galaxies or of active galactic nuclei. We present forecasts for various cases of source distributions which can be checked soon by the Pierre Auger Observatory.Comment: 11 pages, 8 figures, 4 tables; minor changes, matches published versio

    The GZK horizon and constraints on the cosmic ray source spectrum from observations in the GZK regime

    Get PDF
    We discuss the GZK horizon of protons and present a method to constrain the injection spectrum of ultrahigh energy cosmic rays (UHECRs) from supposedly identified extragalactic sources. This method can be applied even when only one or two events per source are observed and is based on the analysis of the probability for a given source to populate different energy bins, depending on the actual CR injection spectral index. In particular, we show that for a typical source density of 4×105Mpc34\times 10^{-5} Mpc^{-3}, a data set of 100 events above 6×10196\times 10^{19} eV allows one in 97% of all cases to distinguish a source spectrum dN/dEE1.1dN/dE\propto E^{-1.1} from one with E2.7E^{-2.7} at 95% confidence level.Comment: v2: 5 pages, 3 figures; shortened, title changed, matches version to be publishe

    On line power spectra identification and whitening for the noise in interferometric gravitational wave detectors

    Get PDF
    In this paper we address both to the problem of identifying the noise Power Spectral Density of interferometric detectors by parametric techniques and to the problem of the whitening procedure of the sequence of data. We will concentrate the study on a Power Spectral Density like the one of the Italian-French detector VIRGO and we show that with a reasonable finite number of parameters we succeed in modeling a spectrum like the theoretical one of VIRGO, reproducing all its features. We propose also the use of adaptive techniques to identify and to whiten on line the data of interferometric detectors. We analyze the behavior of the adaptive techniques in the field of stochastic gradient and in the Least Squares ones.Comment: 28 pages, 21 figures, uses iopart.cls accepted for pubblication on Classical and Quantum Gravit

    Sensitivity of a VIRGO pair to stochastic GW backgrounds

    Get PDF
    The sensitivity of a pair of VIRGO interferometers to gravitational waves backgrounds (GW) of cosmological origin is analyzed for the cases of maximal and minimal overlap of the two detectors. The improvements in the detectability prospects of scale-invariant and non-scale-invariant logarithmic energy spectra of relic GW are discussed.Comment: 25 pages in RevTex style with 6 figure

    Global anisotropy of arrival directions of ultra-high-energy cosmic rays: capabilities of space-based detectors

    Full text link
    Planned space-based ultra-high-energy cosmic-ray detectors (TUS, JEM-EUSO and S-EUSO) are best suited for searches of global anisotropies in the distribution of arrival directions of cosmic-ray particles because they will be able to observe the full sky with a single instrument. We calculate quantitatively the strength of anisotropies associated with two models of the origin of the highest-energy particles: the extragalactic model (sources follow the distribution of galaxies in the Universe) and the superheavy dark-matter model (sources follow the distribution of dark matter in the Galactic halo). Based on the expected exposure of the experiments, we estimate the optimal strategy for efficient search of these effects.Comment: 19 pages, 7 figures, iopart style. v.2: discussion of the effect of the cosmic magnetic fields added; other minor changes. Simulated UHECR skymaps available at http://livni.inr.ac.ru/UHECRskymaps

    Small Scale Anisotropy Predictions for the Auger Observatory

    Full text link
    We study the small scale anisotropy signal expected at the Pierre Auger Observatory in the next 1, 5, 10, and 15 years of operation, from sources of ultra-high energy (UHE) protons. We numerically propagate UHE protons over cosmological distances using an injection spectrum and normalization that fits current data up to \sim 10^{20}\eV. We characterize possible sources of ultra-high energy cosmic rays (UHECRs) by their mean density in the local Universe, ρˉ=10r\bar{\rho} = 10^{-r} Mpc3^{-3}, with rr between 3 and 6. These densities span a wide range of extragalactic sites for UHECR sources, from common to rare galaxies or even clusters of galaxies. We simulate 100 realizations for each model and calculate the two point correlation function for events with energies above 4 \times 10^{19}\eV and above 10^{20}\eV, as specialized to the case of the Auger telescope. We find that for r\ga 4, Auger should be able to detect small scale anisotropies in the near future. Distinguishing between different source densities based on cosmic ray data alone will be more challenging than detecting a departure from isotropy and is likely to require larger statistics of events. Combining the angular distribution studies with the spectral shape around the GZK feature will also help distinguish between different source scenarios.Comment: 15 pages, 6 figures, 6 tables, submitted to JCA

    Temperature dependence of optical spectral weights in quarter-filled ladder systems

    Full text link
    The temperature dependence of the integrated optical conductivity I(T) reflects the changes of the kinetic energy as spin and charge correlations develop. It provides a unique way to explore experimentally the kinetic properties of strongly correlated systems. We calculated I(T) in the frame of a t-J-V model at quarter-filling for ladder systems, like NaV_2O_5, and show that the measured strong T dependence of I(T) for NaV_2O_5 can be explained by the destruction of short range antiferromagnetic correlations. Thus I(T) provides detailed information about super-exchange and magnetic energy scales.Comment: 4 pages, 5 figure

    Low temperature ellipsometry of NaV2O5

    Full text link
    The dielectric function of alpha'NaV2O5 was measured with electric field along the a and b axes in the photon energy range 0.8-4.5 eV for temperatures down to 4K. We observe a pronounced decrease of the intensity of the 1 eV peak upon increasing temperature with an activation energy of about 25meV, indicating that a finite fraction of the rungs becomes occupied with two electrons while others are emptied as temperature increases. No appreciable shifts of peaks were found s in the valence state of individual V atoms at the phase transition is very small. A remarkable inflection of this temperature dependence at the phase transition at 34 K indicates that charge ordering is associated with the low temperature phase.Comment: Revisions in style and order of presentation. One new figure. In press in Physical Review B. REVTeX, 4 pages with 4 postscript figure
    corecore