97 research outputs found
Evaluation of patients treated with natalizumab for progressive multifocal leukoencephalopathy
Background: Progressive multifocal leukoencephalopathy (PML) was reported to have developed in three patients treated with natalizumab. We conducted an evaluation to determine whether PML had developed in any other treated patients.
Methods: We invited patients who had participated in clinical trials in which they received recent or long-term treatment with natalizumab for multiple sclerosis, Crohn's disease, or rheumatoid arthritis to participate. The clinical history, physical examination, brain magnetic resonance imaging (MRI), and testing of cerebrospinal fluid for JC virus DNA were used by an expert panel to evaluate patients for PML. We estimated the risk of PML in patients who completed at least a clinical examination for PML or had an MRI.
Results: Of 3417 patients who had recently received natalizumab while participating in clinical trials, 3116 (91 percent) who were exposed to a mean of 17.9 monthly doses underwent evaluation for PML. Of these, 44 patients were referred to the expert panel because of clinical findings of possible PML, abnormalities on MRI, or a high plasma viral load of JC virus. No patient had detectable JC virus DNA in the cerebrospinal fluid. PML was ruled out in 43 of the 44 patients, but it could not be ruled out in one patient who had multiple sclerosis and progression of neurologic disease because data on cerebrospinal fluid testing and follow-up MRI were not available. Only the three previously reported cases of PML were confirmed (1.0 per 1000 treated patients; 95 percent confidence interval, 0.2 to 2.8 per 1000).
Conclusions: A detailed review of possible cases of PML in patients exposed to natalizumab found no new cases and suggested a risk of PML of roughly 1 in 1000 patients treated with natalizumab for a mean of 17.9 months. The risk associated with longer treatment is not known
Why we need easy access to all data from all clinical trials and how to accomplish it
International calls for registering all trials involving humans and for sharing the results, and sometimes also the raw data and the trial protocols, have increased in recent years. Such calls have come, for example, from the Organization for Economic Cooperation and Development (OECD), the World Health Organization (WHO), the US National Institutes of Heath, the US Congress, the European Commission, the European ombudsman, journal editors, The Cochrane Collaboration, and several funders, for example the UK Medical Research Council, the Wellcome Trust, the Bill and Melinda Gates Foundation and the Hewlett Foundation
Matter-wave Atomic Gradiometer Interferometric Sensor (MAGIS-100)
MAGIS-100 is a next-generation quantum sensor under construction at Fermilab
that aims to explore fundamental physics with atom interferometry over a
100-meter baseline. This novel detector will search for ultralight dark matter,
test quantum mechanics in new regimes, and serve as a technology pathfinder for
future gravitational wave detectors in a previously unexplored frequency band.
It combines techniques demonstrated in state-of-the-art 10-meter-scale atom
interferometers with the latest technological advances of the world's best
atomic clocks. MAGIS-100 will provide a development platform for a future
kilometer-scale detector that would be sufficiently sensitive to detect
gravitational waves from known sources. Here we present the science case for
the MAGIS concept, review the operating principles of the detector, describe
the instrument design, and study the detector systematics.Comment: 65 pages, 18 figure
Reporting bias in medical research - a narrative review
Reporting bias represents a major problem in the assessment of health care interventions. Several prominent cases have been described in the literature, for example, in the reporting of trials of antidepressants, Class I anti-arrhythmic drugs, and selective COX-2 inhibitors. The aim of this narrative review is to gain an overview of reporting bias in the medical literature, focussing on publication bias and selective outcome reporting. We explore whether these types of bias have been shown in areas beyond the well-known cases noted above, in order to gain an impression of how widespread the problem is. For this purpose, we screened relevant articles on reporting bias that had previously been obtained by the German Institute for Quality and Efficiency in Health Care in the context of its health technology assessment reports and other research work, together with the reference lists of these articles
Recommended from our members
The Integration of Clinical Trials With the Practice of Medicine
Importance: Optimal health care delivery, both now and in the future, requires a continuous loop of knowledge generation, dissemination, and uptake on how best to provide care, not just determining what interventions work but also how best to ensure they are provided to those who need them. The randomized clinical trial (RCT) is the most rigorous instrument to determine what works in health care. However, major issues with both the clinical trials enterprise and the lack of integration of clinical trials with health care delivery compromise medicine's ability to best serve society.
Observations: In most resource-rich countries, the clinical trials and health care delivery enterprises function as separate entities, with siloed goals, infrastructure, and incentives. Consequently, RCTs are often poorly relevant and responsive to the needs of patients and those responsible for care delivery. At the same time, health care delivery systems are often disengaged from clinical trials and fail to rapidly incorporate knowledge generated from RCTs into practice. Though longstanding, these issues are more pressing given the lessons learned from the COVID-19 pandemic, heightened awareness of the disproportionate impact of poor access to optimal care on vulnerable populations, and the unprecedented opportunity for improvement offered by the digital revolution in health care. Four major areas must be improved. First, especially in the US, greater clarity is required to ensure appropriate regulation and oversight of implementation science, quality improvement, embedded clinical trials, and learning health systems. Second, greater adoption is required of study designs that improve statistical and logistical efficiency and lower the burden on participants and clinicians, allowing trials to be smarter, safer, and faster. Third, RCTs could be considerably more responsive and efficient if they were better integrated with electronic health records. However, this advance first requires greater adoption of standards and processes designed to ensure health data are adequately reliable and accurate and capable of being transferred responsibly and efficiently across platforms and organizations. Fourth, tackling the problems described above requires alignment of stakeholders in the clinical trials and health care delivery enterprises through financial and nonfinancial incentives, which could be enabled by new legislation. Solutions exist for each of these problems, and there are examples of success for each, but there is a failure to implement at adequate scale.
Conclusions and Relevance: The gulf between current care and that which could be delivered has arguably never been wider. A key contributor is that the 2 limbs of knowledge generation and implementation-the clinical trials and health care delivery enterprises-operate as a house divided. Better integration of these 2 worlds is key to accelerated improvement in health care delivery
- …
