10,890 research outputs found
CN and HNC Line Emission in IR Luminous Galaxies
We have observed HNC 1-0, CN 1-0 and 2-1 line emission in a sample of 13 IR
luminous (LIRGs, L_IR > 10E11 Lo) starburst and Seyfert galaxies. HNC 1-0 is
detected in 9, CN 1-0 is detected in 10 and CN 2-1 in 7 of the galaxies. We
also report the first detection of HC3N (10-9) emission in Arp220. The
excitation of HNC and CN emission requires densities n > 10E4 cm-3. We compare
their intensities to that of the usual high density tracer HCN. The
I(HCN)/I(HNC}) and I(HCN)/I(CN) 1-0 line intensity ratios vary significantly,
from 0.5 to >6, among the galaxies. This implies that the actual properties of
the dense gas is varying among galaxies who otherwise have similar I(CO)/I(HCN)
line intensity ratios. We suggest that the HNC emission is not a reliable
tracer of cold (10 K) gas at the center of LIRGs, as it often is in the disk of
the Milky Way. Instead, the HNC abundance may remain substantial, despite high
gas temperatures, because the emission is emerging from regions where the HCN
and HNC formation and destruction processes are dominated by ion-neutral
reactions which are not strongly dependent on kinetic temperature. We find five
galaxies (four AGNs and one starburst) where the I(HCN)/I(HNC) intensity ratio
is close to unity. In other AGNs, however, I(HCN)/I(HNC}) is >4. The CN
emission is on average a factor of two fainter than HCN, but the variation is
large and there seems to be a trend of reduced relative CN luminosity with
increasing IR luminosity. One galaxy, NGC3690, has a CN luminosity twice that
of HCN and its ISM is thus strongly affected by UV radiation. We discuss the
I(HCN)/I(HNC) and I(HCN)/I(CN) line ratios as indicators of starburst
evolution.Comment: 12 pages, 4 figures. Accepted for publication in Astronomy and
Astrophysic
The effects of ground hydrology on climate sensitivity to solar constant variations
The effects of two different evaporation parameterizations on the climate sensitivity to solar constant variations are investigated by using a zonally averaged climate model. The model is based on a two-level quasi-geostrophic zonally averaged annual mean model. One of the evaporation parameterizations tested is a nonlinear formulation with the Bowen ratio determined by the predicted vertical temperature and humidity gradients near the earth's surface. The other is the linear formulation with the Bowen ratio essentially determined by the prescribed linear coefficient
A condition-specific codon optimization approach for improved heterologous gene expression in Saccharomyces cerevisiae
All authors are with the Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX 78712, USA -- Hal S. Alper is with the Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX 78712, USA
-- Amanda M. Lanza Current Address: Bristol-Myers Squibb, Biologics Development, 35 South Street, Hopkinton, MA 01748, USABackground: Heterologous gene expression is an important tool for synthetic biology that enables metabolic engineering and the production of non-natural biologics in a variety of host organisms. The translational efficiency of heterologous genes can often be improved by optimizing synonymous codon usage to better match the host organism. However, traditional approaches for optimization neglect to take into account many factors known to influence synonymous codon distributions. Results: Here we define an alternative approach for codon optimization that utilizes systems level information and codon context for the condition under which heterologous genes are being expressed. Furthermore, we utilize a probabilistic algorithm to generate multiple variants of a given gene. We demonstrate improved translational efficiency using this condition-specific codon optimization approach with two heterologous genes, the fluorescent protein-encoding eGFP and the catechol 1,2-dioxygenase gene CatA, expressed in S. cerevisiae. For the latter case, optimization for stationary phase production resulted in nearly 2.9-fold improvements over commercial gene optimization algorithms. Conclusions: Codon optimization is now often a standard tool for protein expression, and while a variety of tools and approaches have been developed, they do not guarantee improved performance for all hosts of applications. Here, we suggest an alternative method for condition-specific codon optimization and demonstrate its utility in Saccharomyces cerevisiae as a proof of concept. However, this technique should be applicable to any organism for which gene expression data can be generated and is thus of potential interest for a variety of applications in metabolic and cellular engineering.Chemical EngineeringInstitute for Cellular and Molecular [email protected]
Liquid Coatings for Reducing Corrosion of Steel in Concrete
Inorganic coating materials are being developed to slow or stop corrosion of reinforcing steel members inside concrete structures. It is much simpler and easier to use these coating materials than it is to use conventional corrosion-inhibiting systems based on impressed electric currents. Unlike impressed electrical corrosion-inhibiting systems, these coatings do not require continuous consumption of electrical power and maintenance of power-supply equipment. Whereas some conventional systems involve the use of expensive arc-spray equipment to apply the metallic zinc used as the sacrificial anode material, the developmental coatings can be applied by use of ordinary paint sprayers. A coating material of the type under development is formulated as a liquid containing blended metallic particles and/or moisture-attracting compounds. The liquid mixture is sprayed onto a concrete structure. Experiments have shown that even though such a coat resides on the exterior surface, it generates a protective galvanic current that flows to the interior reinforcing steel members. By effectively transferring the corrosion process from the steel reinforcement to the exterior coating, the protective current slows or stops corrosion of the embedded steel. Specific formulations have been found to meet depolarization criteria of the National Association of Corrosion Engineers (NACE) for complete protection of steel reinforcing bars ("rebar") embedded in concrete
The X-ray reflector in NGC 4945: a time and space resolved portrait
We present a time, spectral and imaging analysis of the X-ray reflector in
NGC 4945, which reveals its geometrical and physical structure with
unprecedented detail. NGC 4945 hosts one of the brightest AGN in the sky above
10 keV, but it is only visible through its reflected/scattered emission below
10 keV, due to absorption by a column density of ~4\times10^24 cm-2. A new
Suzaku campaign of 5 observations spanning ~6 months, together with past
XMM-Newton and Chandra observations, show a remarkable constancy (within <10%)
of the reflected component. Instead, Swift-BAT reveals strong intrinsic
variability on time scales longer than one year. Modeling the circumnuclear gas
as a thin cylinder with the axis on the plane of the sky, we show that the
reflector is at a distance >30-50 pc, well within the imaging capabilities of
Chandra at the distance of NGC 4945 (1"~18 pc). Accordingly, the Chandra
imaging reveals a resolved, flattened, ~150 pc-long clumpy structure, whose
spectrum is fully due to cold reflection of the primary AGN emission. The
clumpiness may explain the small covering factor derived from the spectral and
variability properties.Comment: 6 pages, 4 figures, 1 table. Accepted for publication in MNRA
Experimental and modeling study of the autoignition of 1-hexene/iso-octane mixtures at low temperatures
Autoignition delay times have been measured in a rapid compression machine at
Lille at temperatures after compression from 630 to 840 K, pressures from 8 to
14 bar, \Phi = 1 and for a iso octane/1 hexene mixture containing 82%
iso-octane and 18% 1 hexene. Results have shown that this mixture is strongly
more reactive than pure iso-octane, but less reactive than pure 1 hexene. It
exhibits a classical low temperature behaviour, with the appearance of cool
flame and a negative temperature coefficient region. The composition of the
reactive mixture obtained after the cool flame has also been determined. A
detailed kinetic model has been obtained by using the system EXGAS, developed
in Nancy for the automatic generation of kinetic mechanisms, and an acceptable
agreement with the experimental results has been obtained both for autoignition
delay times and for the distribution of products. A flow rate analysis reveals
that the crossed reactions between species coming from both reactants (like
H-abstractions or combinations) are negligible in the main flow consumption of
the studied hydrocarbons. The ways of formation of the main primary products
observed and the most sensitive rate constants have been identified
Trends in aerosol abundances and distributions
The properties of aerosols that reside in the upper atmosphere are described. Special emphasis is given to the influence these aerosols have on ozone observation systems, mainly through radiative effects, and on ambient ozone concentrations, mainly through chemical effects. It has long been appreciated that stratospheric particles can interfere with the remote sensing of ozone distribution. The mechanism and magnitude of this interference are evaluated. Separate sections deal with the optical properties of upper atmospheric aerosols, long-term trends in stratospheric aerosols, perturbations of the stratospheric aerosol layer by volcanic eruptions, and estimates of the impacts that such particles have on remotely measured ozone concentrations. Another section is devoted to a discussion of the polar stratospheric clouds (PSC's). These unique clouds, recently discovered by satellite observation, are now thought to be intimately connected with the Antarctic ozone hole. Accordingly, interest in PSC's has grown considerably in recent years. This chapter describes what we know about the morphology, physical chemistry, and microphysics of PSC's
The effect of exogenous glucose infusion on early embryonic development in lactating dairy cows
peer-reviewedThe objective of this study was to examine the effect of intravenous infusion of glucose on early embryonic development in lactating dairy cows. Nonpregnant, lactating dairy cows (n = 12) were enrolled in the study (276 ± 17 d in milk). On d 7 after a synchronized estrus, cows were randomly assigned to receive an intravenous infusion of either 750 g/d of exogenous glucose (GLUC; 78 mL/h of 40% glucose wt/vol) or saline (CTRL; 78 mL/h of 0.9% saline solution). The infusion period lasted 7 d and cows were confined to metabolism stalls for the duration of the study. Coincident with the commencement of the infusion on d 7 after estrus, 15 in vitro-produced grade 1 blastocysts were transferred into the uterine horn ipsilateral to the corpus luteum. All animals were slaughtered on d 14 to recover conceptuses, uterine fluid, and endometrial tissue. Glucose infusion increased circulating glucose concentrations (4.70 ± 0.12 vs. 4.15 ± 0.12 mmol/L) but did not affect milk production or dry matter intake. Circulating β-hydroxybutyrate concentrations were decreased (0.51 ± 0.01 vs. 0.70 ± 0.01 mmol/L for GLUC vs. CTRL, respectively) but plasma fatty acids, progesterone, and insulin concentrations were unaffected by treatment. Treatment did not affect either uterine lumen fluid glucose concentration or the mRNA abundance of specific glucose transporters in the endometrium. Mean conceptus length, width, and area on d 14 were reduced in the GLUC treatment compared with the CTRL treatment. A greater proportion of embryos in the CTRL group had elongated to all length cut-off measurements between 11 and 20 mm (measured in 1-mm increments) compared with the GLUC treatment. In conclusion, infusion of glucose into lactating dairy cows from d 7 to d 14 post-estrus during the critical period of conceptus elongation had an adverse impact on early embryonic development
On finite -groups whose automorphisms are all central
An automorphism of a group is said to be central if
commutes with every inner automorphism of . We construct a family of
non-special finite -groups having abelian automorphism groups. These groups
provide counter examples to a conjecture of A. Mahalanobis [Israel J. Math.,
{\bf 165} (2008), 161 - 187]. We also construct a family of finite -groups
having non-abelian automorphism groups and all automorphisms central. This
solves a problem of I. Malinowska [Advances in group theory, Aracne Editrice,
Rome 2002, 111-127].Comment: 11 pages, Counter examples to a conjecture from [Israel J. Math.,
{\bf 165} (2008), 161 - 187]; This paper will appear in Israel J. Math. in
201
- …
