2,962 research outputs found
Child Mental Health and Human Capital Accumulation: The Case of ADHD
One in five U.S. youngsters has a mental disorder, but we know little about the effects of these disorders on outcomes. We examine U.S. and Canadian children with symptoms of Attention Deficit Hyperactivity Disorder (ADHD), the most common child mental health problem. Our innovations include the use of large nationally representative samples of children, the use of questions administered to all children rather than focusing only on diagnosed cases, and the use of sibling fixed effects to control for omitted variables. We find large negative effects on test scores and schooling attainment suggesting that mental health conditions are a more important determinant of average outcomes than physical health conditions.
Socioeconomic Status and Health: Why is the Relationship Stronger for Older Children?
Case, Lubotsky, and Paxson (2001) show that the well-known relationship between socio- economic status (SES) and health exists in childhood and grows more pronounced with age. However, in cross-sectional data it is difficult to distinguish between two possible explanations. The first is that low-SES children are less able to respond to a given health shock. The second is that low SES children experience more shocks. We show, using panel data on Canadian children that: 1) the gradient we estimate in the cross section is very similar to that estimated previously using U.S. children; 2) both high and low-SES children recover from past health shocks to about the same degree; and 3) that the relationship between SES and health grows stronger over time mainly because low-SES children receive more negative health shocks. In addition, we examine the effect of health shocks on math and reading scores. We find that health shocks affect test scores and future health in very similar ways. Our results suggest that public policy aimed at reducing SES-related health differentials in children should focus on reducing the incidence of health shocks as well as on reducing disparities in access to palliative care.
Pet owner and vet interactions: exploring the drivers of AMR
Background:
Antimicrobial resistance (AMR) is a growing public health problem across the world. As the negative consequences of AMR become apparent at local, national and international levels, more attention is being focussed on the variety of mechanisms by which AMR is potentiated. We explore how interactions between pet owners and veterinarians represent a key arena in which AMR-related behaviours can be shaped.
Methods:
In depth semi-structured interviews were carried out with pet owners (n = 23) and vets (n = 16) across the UK in 2017. A thematic analysis approach was taken, with inductively gathered data analysed deductively using a behavioural framework to identified key behaviours emerging from participant accounts which were amenable to change.
Results:
Interactions between vets and pet owners were characterised by misunderstandings and misconceptions around antibiotics by pet owners, and a lack of clarity about the positions and intentions of the other party. Vets and pet owners had differing perceptions of where pressure to prescribe antibiotics inappropriately originated. Vets perceived it was mostly pet owners who pushed for inappropriate antibiotics, whereas pet owners reported they felt it was vets that overprescribed. Low levels of understanding of AMR in general were apparent amongst pet owners and understandings with regard to AMR in pets specifically were almost non-existent in the sample.
Conclusions:
Improved use of antibiotics could be assisted by educating the pet owning public and by guideline development for companion animal vets, concurrent development of mandatory legislation, increased consultation time to facilitate better communication, development of vet training on antimicrobial therapy and stewardship led interactions with pet owners, and increased levels of knowledge of pet-related AMR amongst pet owners
A small azhdarchoid pterosaur from the latest Cretaceous, the age of flying giants
Pterosaur fossils from the Campanian–Maastrichtian of North America have been reported from the continental interior, but few have been described from the west coast. The first pterosaur from the Campanian Northumberland Formation (Nanaimo Group) of Hornby Island, British Columbia, is represented here by a humerus, dorsal vertebrae (including three fused notarial vertebrae), and other fragments. The elements have features typical of Azhdarchoidea, an identification consistent with dominance of this group in the latest Cretaceous. The new material is significant for its size and ontogenetic stage: the humerus and vertebrae indicate a wingspan of ca 1.5?m, but histological sections and bone fusions indicate the individual was approaching maturity at time of death. Pterosaurs of this size are exceedingly rare in Upper Cretaceous strata, a phenomenon commonly attributed to smaller pterosaurs becoming extinct in the Late Cretaceous as part of a reduction in pterosaur diversity and disparity. The absence of small juveniles of large species—which must have existed—in the fossil record is evidence of a preservational bias against small pterosaurs in the Late Cretaceous, and caution should be applied to any interpretation of latest Cretaceous pterosaur diversity and success
Tracing melioidosis back to the source: using whole-genome sequencing to investigate an outbreak originating from a contaminated domestic water supply
Melioidosis, a disease of public health importance in Southeast Asia and northern Australia, is caused by the Gram-negative soil bacillus Burkholderia pseudomallei. Melioidosis is typically acquired through environmental exposure, and case clusters are rare, even in regions where the disease is endemic. B. pseudomallei is classed as a tier 1 select agent by the Centers for Disease Control and Prevention; from a biodefense perspective, source attribution is vital in an outbreak scenario to rule out a deliberate release. Two cases of melioidosis within a 3-month period at a residence in rural northern Australia prompted an investigation to determine the source of exposure. B. pseudomallei isolates from the property's groundwater supply matched the multilocus sequence type of the clinical isolates. Whole-genome sequencing confirmed the water supply as the probable source of infection in both cases, with the clinical isolates differing from the likely infecting environmental strain by just one single nucleotide polymorphism (SNP) each. For the first time, we report a phylogenetic analysis of genomewide insertion/deletion (indel) data, an approach conventionally viewed as problematic due to high mutation rates and homoplasy. Our whole-genome indel analysis was concordant with the SNP phylogeny, and these two combined data sets provided greater resolution and a better fit with our epidemiological chronology of events. Collectively, this investigation represents a highly accurate account of source attribution in a melioidosis outbreak and gives further insight into a frequently overlooked reservoir of B. pseudomallei. Our methods and findings have important implications for outbreak source tracing of this bacterium and other highly recombinogenic pathogens
Does the Debris Disk around HD 32297 Contain Cometary Grains?
We present an adaptive optics imaging detection of the HD 32297 debris disk
at L' (3.8 \microns) obtained with the LBTI/LMIRcam infrared instrument at the
LBT. The disk is detected at signal-to-noise per resolution element ~ 3-7.5
from ~ 0.3-1.1" (30-120 AU). The disk at L' is bowed, as was seen at shorter
wavelengths. This likely indicates the disk is not perfectly edge-on and
contains highly forward scattering grains. Interior to ~ 50 AU, the surface
brightness at L' rises sharply on both sides of the disk, which was also
previously seen at Ks band. This evidence together points to the disk
containing a second inner component located at 50 AU. Comparing the
color of the outer (50 /AU ) portion of the disk at L' with
archival HST/NICMOS images of the disk at 1-2 \microns allows us to test the
recently proposed cometary grains model of Donaldson et al. 2013. We find that
the model fails to match the disk's surface brightness and spectrum
simultaneously (reduced chi-square = 17.9). When we modify the density
distribution of the model disk, we obtain a better overall fit (reduced
chi-square = 2.9). The best fit to all of the data is a pure water ice model
(reduced chi-square = 1.06), but additional resolved imaging at 3.1 \microns is
necessary to constrain how much (if any) water ice exists in the disk, which
can then help refine the originally proposed cometary grains model.Comment: Accepted to ApJ January 13, 2014. 12 pages (emulateapj style), 9
figures, 1 tabl
- …
