208 research outputs found

    The SST-1M camera for the Cherenkov Telescope Array

    Get PDF
    The prototype camera of the single-mirror Small Size Telescopes (SST-1M) proposed for the Cherenkov Telescope Array (CTA) project has been designed to be very compact and to deliver high performance over thirty years of operation. The camera is composed of an hexagonal photo-detection plane made of custom designed large area hexagonal silicon photomultipliers and a high throughput, highly configurable, fully digital readout and trigger system (DigiCam). The camera will be installed on the telescope structure at the H. Niewodnicza{\'n}ski institute of Nuclear Physics in Krakow in fall 2015. In this contribution, we review the steps that led to the development of the innovative photo-detection plane and readout electronics, and we describe the test and calibration strategy adopted.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.05894; Full consortium author list at http://cta-observatory.or

    Biomechanical evaluation of predictive parameters of progression in adolescent isthmic spondylolisthesis: a computer modeling and simulation study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pelvic incidence, sacral slope and slip percentage have been shown to be important predicting factors for assessing the risk of progression of low- and high-grade spondylolisthesis. Biomechanical factors, which affect the stress distribution and the mechanisms involved in the vertebral slippage, may also influence the risk of progression, but they are still not well known. The objective was to biomechanically evaluate how geometric sacral parameters influence shear and normal stress at the lumbosacral junction in spondylolisthesis.</p> <p>Methods</p> <p>A finite element model of a low-grade L5-S1 spondylolisthesis was constructed, including the morphology of the spine, pelvis and rib cage based on measurements from biplanar radiographs of a patient. Variations provided on this model aimed to study the effects on low grade spondylolisthesis as well as reproduce high grade spondylolisthesis. Normal and shear stresses at the lumbosacral junction were analyzed under various pelvic incidences, sacral slopes and slip percentages. Their influence on progression risk was statistically analyzed using a one-way analysis of variance.</p> <p>Results</p> <p>Stresses were mainly concentrated on the growth plate of S1, on the intervertebral disc of L5-S1, and ahead the sacral dome for low grade spondylolisthesis. For high grade spondylolisthesis, more important compression and shear stresses were seen in the anterior part of the growth plate and disc as compared to the lateral and posterior areas. Stress magnitudes over this area increased with slip percentage, sacral slope and pelvic incidence. Strong correlations were found between pelvic incidence and the resulting compression and shear stresses in the growth plate and intervertebral disc at the L5-S1 junction.</p> <p>Conclusions</p> <p>Progression of the slippage is mostly affected by a movement and an increase of stresses at the lumbosacral junction in accordance with spino-pelvic parameters. The statistical results provide evidence that pelvic incidence is a predictive parameter to determine progression in isthmic spondylolisthesis.</p

    H.E.S.S. and Suzaku observations of the Vela X pulsar wind nebula

    Get PDF
    International audienceContextContext. Pulsar wind nebulae (PWNe) represent the most prominent population of Galactic very-high-energy gamma-ray sources and are thought to be an efficient source of leptonic cosmic rays. Vela X is a nearby middle-aged PWN, which shows bright X-ray and TeV gamma-ray emission towards an elongated structure called the cocoon. AimsAims. Since TeV emission is likely inverse-Compton emission of electrons, predominantly from interactions with the cosmic microwave background, while X-ray emission is synchrotron radiation of the same electrons, we aim to derive the properties of the relativistic particles and of magnetic fields with minimal modelling. MethodsMethods. We used data from the SuzakuSuzaku XIS to derive the spectra from three compact regions in Vela X covering distances from 0.3 to 4 pc from the pulsar along the cocoon. We obtained gamma-ray spectra of the same regions from H.E.S.S. observations and fitted a radiative model to the multi-wavelength spectra. ResultsResults. The TeV electron spectra and magnetic field strengths are consistent within the uncertainties for the three regions, with energy densities of the order 1012^{−12} erg cm3^{−3}. The data indicate the presence of a cutoff in the electron spectrum at energies of \sim100 TeV and a magnetic field strength of \sim6 μ\muG. Constraints on the presence of turbulent magnetic fields are weak. ConclusionsConclusions. The pressure of TeV electrons and magnetic fields in the cocoon is dynamically negligible, requiring the presence of another dominant pressure component to balance the pulsar wind at the termination shock. Sub-TeV electrons cannot completely account for the missing pressure, which may be provided either by relativistic ions or from mixing of the ejecta with the pulsar wind. The electron spectra are consistent with expectations from transport scenarios dominated either by advection via the reverse shock or by diffusion, but for the latter the role of radiative losses near the termination shock needs to be further investigated in the light of the measured cutoff energies. Constraints on turbulent magnetic fields and the shape of the electron cutoff can be improved by spectral measurements in the energy range ≳ 10 keV

    Granica izlaganja formaldehidu u alkoholnim pićima

    Get PDF
    Formaldehyde has been classified as carcinogenic to humans (WHO IARC group 1). It causes leukaemia and nasopharyngeal cancer, and was described to regularly occur in alcoholic beverages. However, its risk associated with consumption of alcohol has not been systematically studied, so this study will provide the first risk assessment of formaldehyde for consumers of alcoholic beverages. Human dietary intake of formaldehyde via alcoholic beverages in the European Union was estimated based on WHO alcohol consumption data and literature on formaldehyde contents of different beverage groups (beer, wine, spirits, and unrecorded alcohol). The risk assessment was conducted using the margin of exposure (MOE) approach with benchmark doses (BMD) for 10 % effect obtained from dose-response modelling of animal experiments. For tumours in male rats, a BMD of 30 mg kg-1 body weight per day and a “BMD lower confi dence limit” (BMDL) of 23 mg kg-1 d-1 were calculated from available long-term animal experiments. The average human exposure to formaldehyde from alcoholic beverages was estimated at 8·10-5 mg kg-1 d-1. Comparing the human exposure with BMDL, the resulting MOE was above 200,000 for average scenarios. Even in the worst-case scenarios, the MOE was never below 10,000, which is considered to be the threshold for public health concerns. The risk assessment shows that the cancer risk from formaldehyde to the alcohol-consuming population is negligible and the priority for risk management (e.g. to reduce the contamination) is very low. The major risk in alcoholic beverages derives from ethanol and acetaldehyde.Formaldehid je kancerogen za ljude te je klasificiran u skupinu 1 prema WHO IARC-u. Uzrokuje leukemiju i nazofaringealni karcinom, a navodi se i kao redoviti sastojak alkoholnih pića. Međutim, rizik od izlaganja formaldehidu konzumacijom alkoholnih pića nije sustavno istražen pa će ovo istraživanje pružiti prvu takvu procjenu rizika. Količina formaldehida koju ljudi unose alkoholnim pićima u Europskoj je uniji procijenjena temeljem podataka Svjetske zdravstvene organizacije o konzumaciji alkohola i literature o sadržaju formaldehida u različitim skupinama alkoholnih pića (pivo, vino, jaka alkoholna pića i neregistrirani alkohol). Procjena rizika obavljena je korištenjem pristupa granice izlaganja (eng. margin of exposure, MOE) i graničnih doza (eng. benchmark doses, BMD) za 10 %-tni učinak koji se postiže modeliranjem odnosa doza-odgovor u ispitivanjima provedenima na životinjama. BMD od 30 mg kg-1 tjelesne težine na dan i BMD s nižom granicom pouzdanosti (BMDL) od 23 mg kg-1 d-1 izračunati su za tumore kod mužjaka štakora temeljem raspoloživih dugotrajnih ispitivanja provedenih na životinjama. Prosječno izlaganje ljudi formaldehidu u alkoholnim pićima procijenjeno je na 8·10-5 mg kg-1 d-1. U usporedbi s BMDL vrijednošću krajnji MOE je iznosio više od 200.000 u prosječnim situacijama. Čak i u najlošijim situacijama MOE nije nikada bio niži od 10.000, što se smatra graničnom vrijednošću za zdravlje ljudi. Procjena rizika pokazuje da je rizik od nastanka karcinoma uslijed izlaganja formaldehidu iz alkoholnih pića zanemariv te da je prioritet upravljanja rizikom u takvim slučajevima (npr. kako bi se smanjila kontaminacija) vrlo nizak. Najveći rizik proizlazi iz etanola i acetaldehida koji se također nalaze u alkoholnim pićima

    The Advanced Virgo+ status

    Get PDF
    The gravitational wave detector Advanced Virgo+ is currently in the commissioning phase in view of the fourth Observing Run (O4). The major upgrades with respect to the Advanced Virgo configuration are the implementation of an additional recycling cavity, the Signal Recycling cavity (SRC), at the output of the interferometer to broaden the sensitivity band and the Frequency Dependent Squeezing (FDS) to reduce quantum noise at all frequencies. The main difference of the Advanced Virgo + detector with respect to the LIGO detectors is the presence of marginally stable recycling cavities, with respect to the stable recycling cavities present in the LIGO detectors, which increases the difficulties in controlling the interferometer in presence of defects (both thermal and cold defects). This work will focus on the interferometer commissioning, highlighting the control challenges to maintain the detector in the working point which maximizes the sensitivity and the duty cycle for scientific data taking

    Advanced Virgo Plus: Future Perspectives

    Get PDF
    While completing the commissioning phase to prepare the Virgo interferometer for the next joint Observation Run (O4), the Virgo collaboration is also finalizing the design of the next upgrades to the detector to be employed in the following Observation Run (O5). The major upgrade will concern decreasing the thermal noise limit, which will imply using very large test masses and increased laser beam size. But this will not be the only upgrade to be implemented in the break between the O4 and O5 observation runs to increase the Virgo detector strain sensitivity. The paper will cover the challenges linked to this upgrade and implications on the detector's reach and observational potential, reflecting the talk given at 12th Cosmic Ray International Seminar - CRIS 2022 held in September 2022 in Napoli

    Calibration of advanced Virgo and reconstruction of the detector strain h( t) during the observing run O3

    Get PDF
    The three advanced Virgo and LIGO gravitational wave detectors participated to the third observing run (O3) between 1 April 2019 15:00 UTC and 27 March 2020 17:00 UTC, leading to several gravitational wave detections per month. This paper describes the advanced Virgo detector calibration and the reconstruction of the detector strain h(t) during O3, as well as the estimation of the associated uncertainties. For the first time, the photon calibration technique as been used as reference for Virgo calibration, which allowed to cross-calibrate the strain amplitude of the Virgo and LIGO detectors. The previous reference, so-called free swinging Michelson technique, has still been used but as an independent cross-check. h(t) reconstruction and noise subtraction were processed online, with good enough quality to prevent the need for offline reprocessing, except for the two last weeks of September 2019. The uncertainties for the reconstructed h(t) strain, estimated in this paper in a 20-2000 Hz frequency band, are frequency independent: 5% in amplitude, 35 mrad in phase and 10 μs in timing, with the exception of larger uncertainties around 50 Hz

    Frequency-Dependent Squeezed Vacuum Source for the Advanced Virgo Gravitational-Wave Detector

    Get PDF
    In this Letter, we present the design and performance of the frequency-dependent squeezed vacuum source that will be used for the broadband quantum noise reduction of the Advanced Virgo Plus gravitational-wave detector in the upcoming observation run. The frequency-dependent squeezed field is generated by a phase rotation of a frequency-independent squeezed state through a 285 m long, high-finesse, near-detuned optical resonator. With about 8.5 dB of generated squeezing, up to 5.6 dB of quantum noise suppression has been measured at high frequency while close to the filter cavity resonance frequency, the intracavity losses limit this value to about 2 dB. Frequency-dependent squeezing is produced with a rotation frequency stability of about 6 Hz rms, which is maintained over the long term. The achieved results fulfill the frequency dependent squeezed vacuum source requirements for Advanced Virgo Plus. With the current squeezing source, considering also the estimated squeezing degradation induced by the interferometer, we expect a reduction of the quantum shot noise and radiation pressure noise of up to 4.5 dB and 2 dB, respectively

    Quantum Backaction on kg-Scale Mirrors: Observation of Radiation Pressure Noise in the Advanced Virgo Detector

    Get PDF
    The quantum radiation pressure and the quantum shot noise in laser-interferometric gravitational wave detectors constitute a macroscopic manifestation of the Heisenberg inequality. If quantum shot noise can be easily observed, the observation of quantum radiation pressure noise has been elusive, so far, due to the technical noise competing with quantum effects. Here, we discuss the evidence of quantum radiation pressure noise in the Advanced Virgo gravitational wave detector. In our experiment, we inject squeezed vacuum states of light into the interferometer in order to manipulate the quantum backaction on the 42 kg mirrors and observe the corresponding quantum noise driven displacement at frequencies between 30 and 70 Hz. The experimental data, obtained in various interferometer configurations, is tested against the Advanced Virgo detector quantum noise model which confirmed the measured magnitude of quantum radiation pressure noise

    Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light

    Get PDF
    Current interferometric gravitational-wave detectors are limited by quantum noise over a wide range of their measurement bandwidth. One method to overcome the quantum limit is the injection of squeezed vacuum states of light into the interferometer’s dark port. Here, we report on the successful application of this quantum technology to improve the shot noise limited sensitivity of the Advanced Virgo gravitational-wave detector. A sensitivity enhancement of up to 3.2±0.1  dB beyond the shot noise limit is achieved. This nonclassical improvement corresponds to a 5%–8% increase of the binary neutron star horizon. The squeezing injection was fully automated and over the first 5 months of the third joint LIGO-Virgo observation run O3 squeezing was applied for more than 99% of the science time. During this period several gravitational-wave candidates have been recorded
    corecore