64 research outputs found
Atom--Molecule Coherence in a Bose-Einstein Condensate
Coherent coupling between atoms and molecules in a Bose-Einstein condensate
(BEC) has been observed. Oscillations between atomic and molecular states were
excited by sudden changes in the magnetic field near a Feshbach resonance and
persisted for many periods of the oscillation. The oscillation frequency was
measured over a large range of magnetic fields and is in excellent quantitative
agreement with the energy difference between the colliding atom threshold
energy and the energy of the bound molecular state. This agreement indicates
that we have created a quantum superposition of atoms and diatomic molecules,
which are chemically different species.Comment: 7 pages, 6 figure
Review—Smart Wearable Sensors for Health and Lifestyle Monitoring: Commercial and Emerging Solutions
The rapid growth of urbanisation has brought about various health concerns for citizens living in urban environments. Sedentary lifestyles, increased pollution levels, and high levels of stress have become prevalent issues affecting the overall well-being of urban populations. In recent years, the emergence of smart wearable devices has offered a promising avenue to address these health concerns and promote healthier lifestyles. This review evaluatse the effectiveness of smart wearables in mitigating health concerns and improving the lifestyles of urban citizens. The review involves 50 relevant peer-reviewed smart wearable studies and supporting literature from electronic databases PubMed, Ovid, Web of Science, and Scopus. Results indicate that smart wearables have the potential to positively impact the health of urban citizens by promoting physical activity, tracking vital signs, monitoring sleep patterns, and providing personalised feedback and recommendations to promote physical activity levels. Furthermore, these devices can help individuals manage stress levels, enhance self-awareness, and foster healthier behaviours. However, the review also identifies several challenges, including the accuracy and reliability of wearable data, user engagement and adherence, and ethical considerations regarding data privacy and security.
</jats:p
Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond
We review recent developments in the physics of ultracold atomic and
molecular gases in optical lattices. Such systems are nearly perfect
realisations of various kinds of Hubbard models, and as such may very well
serve to mimic condensed matter phenomena. We show how these systems may be
employed as quantum simulators to answer some challenging open questions of
condensed matter, and even high energy physics. After a short presentation of
the models and the methods of treatment of such systems, we discuss in detail,
which challenges of condensed matter physics can be addressed with (i)
disordered ultracold lattice gases, (ii) frustrated ultracold gases, (iii)
spinor lattice gases, (iv) lattice gases in "artificial" magnetic fields, and,
last but not least, (v) quantum information processing in lattice gases. For
completeness, also some recent progress related to the above topics with
trapped cold gases will be discussed.Comment: Review article. v2: published version, 135 pages, 34 figure
Constitutive nuclear factor-kappa B mRNA, protein overexpression and enhanced DNA-binding activity in thymidylate synthase inhibitor-resistant tumour cells
In this study, the gene copy number, mRNA and protein expression levels and nuclear DNA-binding activity of nuclear factor kappa B (NF-kappaB) were compared in a panel of five pairs of thymidylate synthase (TS) inhibitor-resistant and wild-type parent cancer cell lines. High constitutive NF-kappaB DNA-binding activity was detected in all chemoresistant cell lines. The upregulated NF-kappaB activity was composed of NF-kappaB subunits p50 and p65. Four out of five resistant cell lines constitutively overexpressed NF-kappaB p50 and p63 mRNA and protein. One resistant cell line with the highest NF-kappaB DNA-binding activity showed normal p50 and p65 protein expression. No NF-kappaB gene amplification was detected in resistant cell lines. Transient exposure of wild-type RKOWT and H630(WT) cells to 5-FU induced NF-kappaB DNA-binding activity but had no effect on NF-kappaB protein expression in these cells, Our results indicate that high constitutive NF-kappaB activity caused by its gene overexpression is an intrinsic character of TS inhibitor-resistant cells. NF-kappaB can antagonise anticancer drug-induced apoptosis. High NF-kappaB expression and nuclear activity in TS inhibitor-resistant cancer cells may play an important role in the chemoresistance
No association between the aluminium content of trabecular bone and bone density, mass or size of the proximal femur in elderly men and women
BACKGROUND: Aluminium is considered a bone toxic metal since poisoning can lead to aluminium-induced bone disease in patients with chronic renal failure. Healthy subjects with normal renal function retain 4% of the aluminium consumed. They might thus also accumulate aluminium and eventually be at risk of long-term low-grade aluminium intoxication that can affect bone health. METHODS: We therefore examined 62 patients with femoral neck fractures or osteoarthritis of the hip (age range 38–93), with the aim of examining whether aluminium in bone is associated with bone-mineral density (BMD), content (BMC) or width of the femoral neck measured by dual-energy X-ray absorptiometry (DXA). During operations bone biopsies were taken from the trabecular bone of the proximal femur. The samples were measured for their content of aluminium using a mass spectrometer. RESULTS: No significant association between the aluminium content in bone and femoral neck BMD, BMC or width could be found after multivariate adjustment. CONCLUSION: Our results indicate that the accumulated aluminium content in bone during life does not substantially influence the extent of osteoporosis
Bortezomib/docetaxel combination therapy in patients with anthracycline-pretreated advanced/metastatic breast cancer: a phase I/II dose-escalation study
The aim of this study was to determine the dose-limiting toxicities (DLTs) and maximum tolerated dose (MTD) of bortezomib plus docetaxel in patients with anthracycline-pretreated advanced/metastatic breast cancer. Forty-eight patients received up to eight 21-day cycles of docetaxel (60–100 mg m−2 on day 1) plus bortezomib (1.0–1.5 mg m−2 on days 1, 4, 8, and 11). Pharmacodynamic and pharmacokinetic analyses were performed in a subset of patients. Five patients experienced DLTs: grade 3 bone pain (n=1) and febrile neutropenia (n=4). The MTD was bortezomib 1.5 mg m−2 plus docetaxel 75 mg m−2. All 48 patients were assessable for safety and efficacy. The most common adverse events were diarrhoea, nausea, alopecia, asthenia, and vomiting. The most common grade 3/4 toxicities were neutropenia (44%), and febrile neutropenia and diarrhoea (each 19%). Overall patient response rate was 29%. Median time to progression was 5.4 months. In patients with confirmed response, median time to response was 1.3 months and median duration of response was 3.2 months. At the MTD, response rate was 38%. Pharmacokinetic characteristics of bortezomib/docetaxel were comparable with single-agent data. Addition of docetaxel appeared not to affect bortezomib inhibition of 20S proteasome activity. Mean alpha-1 acid glycoprotein concentrations increased from baseline at nearly all time points across different bortezomib dose levels. Bortezomib plus docetaxel is an active combination for anthracycline-pretreated advanced/metastatic breast cancer. The safety profile is manageable and consistent with the side effects of the individual agents
Characterization of Trapped Lignin-Degrading Microbes in Tropical Forest Soil
Lignin is often the most difficult portion of plant biomass to degrade, with fungi generally thought to dominate during late stage decomposition. Lignin in feedstock plant material represents a barrier to more efficient plant biomass conversion and can also hinder enzymatic access to cellulose, which is critical for biofuels production. Tropical rain forest soils in Puerto Rico are characterized by frequent anoxic conditions and fluctuating redox, suggesting the presence of lignin-degrading organisms and mechanisms that are different from known fungal decomposers and oxygen-dependent enzyme activities. We explored microbial lignin-degraders by burying bio-traps containing lignin-amended and unamended biosep beads in the soil for 1, 4, 13 and 30 weeks. At each time point, phenol oxidase and peroxidase enzyme activity was found to be elevated in the lignin-amended versus the unamended beads, while cellulolytic enzyme activities were significantly depressed in lignin-amended beads. Quantitative PCR of bacterial communities showed more bacterial colonization in the lignin-amended compared to the unamended beads after one and four weeks, suggesting that the lignin supported increased bacterial abundance. The microbial community was analyzed by small subunit 16S ribosomal RNA genes using microarray (PhyloChip) and by high-throughput amplicon pyrosequencing based on universal primers targeting bacterial, archaeal, and eukaryotic communities. Community trends were significantly affected by time and the presence of lignin on the beads. Lignin-amended beads have higher relative abundances of representatives from the phyla Actinobacteria, Firmicutes, Acidobacteria and Proteobacteria compared to unamended beads. This study suggests that in low and fluctuating redox soils, bacteria could play a role in anaerobic lignin decomposition
To automate or not to automate: this is the question
New protocols and instrumentation significantly boost the outcome of structural biology, which has resulted in significant growth in the number of deposited Protein Data Bank structures. However, even an enormous increase of the productivity of a single step of the structure determination process may not significantly shorten the time between clone and deposition or publication. For example, in a medium size laboratory equipped with the LabDB and HKL-3000 systems, we show that automation of some (and integration of all) steps of the X-ray structure determination pathway is critical for laboratory productivity. Moreover, we show that the lag period after which the impact of a technology change is observed is longer than expected
Potentiation of tumour apoptosis by human growth hormone via glutathione production and decreased NF-κB activity
Soundscapes: Toward a Sounded Anthropology
A generation of scholars in multiple disciplines has investigated sound in ways that are productive for anthropologists. We introduce the concept of soundscape as a modality for integrating this work into an anthropological approach. We trace its history as a response to the technological mediations and listening practices emergent in modernity and note its absence in the anthropological literature. We then trace the history of technology that gave rise to anthropological recording practices, film sound techniques, and experimental sound art, noting productive interweavings of these threads. After considering ethnographies that explore relationships between sound, personhood, aesthetics, history, and ideology, we question sound's supposed ephemerality as a reason for the discipline's inattention. We conclude with a call for an anthropology that more seriously engages with its own history as a sounded discipline and moves forward in ways that incorporate the social and cultural sounded world more fully. Copyright © 2010 by Annual Reviews. All rights reserved
- …
