127 research outputs found
Elevated arousal at time of decision-making is not the arbiter of risk avoidance in chickens
The somatic marker hypothesis proposes that humans recall previously experienced physiological responses to aid decision-making under uncertainty. However, little is known about the mechanisms used by non-human animals to integrate risk perception with predicted gains and losses. We monitored the behaviour and physiology of chickens when the choice between a high-gain (large food quantity), high-risk (1 in 4 probability of receiving an air-puff) option (HGRAP) or a low-gain (small food quantity), no-risk (of an air-puff) (LGNAP) option. We assessed when arousal increased by considering different stages of the decision-making process (baseline, viewing, anticipation, reward periods) and investigated whether autonomic responses influenced choice outcome both immediately and in the subsequent trial. Chickens were faster to choose and their heart-rate significantly increased between the viewing and anticipation (post-decision, pre-outcome) periods when selecting the HGRAP option. This suggests that they responded physiologically to the impending risk. Additionally, arousal was greater following a HGRAP choice that resulted in an air-puff, but this did not deter chickens from subsequently choosing HGRAP. In contrast to human studies, we did not find evidence that somatic markers were activated during the viewing period, suggesting that arousal is not a good measure of avoidance in non-human animals
Camouflage Effects of Various Colour-Marking Morphs against Different Microhabitat Backgrounds in a Polymorphic Pygmy Grasshopper Tetrix japonica
Colour-marking polymorphism is widely distributed among cryptic species. To account for the adaptive significance of such polymorphisms, several hypotheses have been proposed to date. Although these hypotheses argue over the degree of camouflage effects of marking morphs (and the interactions between morphs and their microhabitat backgrounds), as far as we know, most empirical evidence has been provided under unnatural conditions (i.e., using artificial prey).Tetrix japonica, a pygmy grasshopper, is highly polymorphic in colour-markings and occurs in both sand and grass microhabitats. Even within a microhabitat, T. japonica is highly polymorphic. Using humans as dummy predators and printed photographs in which various morphs of grasshoppers were placed against different backgrounds, we addressed three questions to test the neutral, background heterogeneity, and differential crypsis hypotheses in four marking-type morphs: 1) do the morphs differ in the degree of crypsis in each microhabitat, 2) are different morphs most cryptic in specific backgrounds of the microhabitats, and 3) does the morph frequency reflect the degree of crypsis?The degree of camouflage differed among the four morphs; therefore, the neutral hypothesis was rejected. Furthermore, the order of camouflage advantage among morphs differed depending on the two types of backgrounds (sand and grass), although the grass background consistently provided greater camouflage effects. Thus, based on our results, we could not reject the background heterogeneity hypothesis. Under field conditions, the more cryptic morphs comprised a minority of the population. Overall, our results demonstrate that the different morphs were not equivalent in the degree of crypsis, but the degree of camouflage of the morphs was not consistent with the morph frequency. These findings suggest that trade-offs exist between the camouflage benefit of body colouration and other fitness components, providing a better understanding of the adaptive significance of colour-markings and presumably supporting the differential crypsis hypothesis
Dazzle Camouflage Affects Speed Perception
Movement is the enemy of camouflage: most attempts at concealment are disrupted by motion of the target. Faced with this problem, navies in both World Wars in the twentieth century painted their warships with high contrast geometric patterns: so-called “dazzle camouflage”. Rather than attempting to hide individual units, it was claimed that this patterning would disrupt the perception of their range, heading, size, shape and speed, and hence reduce losses from, in particular, torpedo attacks by submarines. Similar arguments had been advanced earlier for biological camouflage. Whilst there are good reasons to believe that most of these perceptual distortions may have occurred, there is no evidence for the last claim: changing perceived speed. Here we show that dazzle patterns can distort speed perception, and that this effect is greatest at high speeds. The effect should obtain in predators launching ballistic attacks against rapidly moving prey, or modern, low-tech battlefields where handheld weapons are fired from short ranges against moving vehicles. In the latter case, we demonstrate that in a typical situation involving an RPG7 attack on a Land Rover the reduction in perceived speed is sufficient to make the grenade miss where it was aimed by about a metre, which could be the difference between survival or not for the occupants of the vehicle
Quantifying Variability of Avian Colours: Are Signalling Traits More Variable?
Background
Increased variability in sexually selected ornaments, a key assumption of evolutionary theory, is thought to be maintained through condition-dependence. Condition-dependent handicap models of sexual selection predict that (a) sexually selected traits show amplified variability compared to equivalent non-sexually selected traits, and since males are usually the sexually selected sex, that (b) males are more variable than females, and (c) sexually dimorphic traits more variable than monomorphic ones. So far these predictions have only been tested for metric traits. Surprisingly, they have not been examined for bright coloration, one of the most prominent sexual traits. This omission stems from computational difficulties: different types of colours are quantified on different scales precluding the use of coefficients of variation.
Methodology/Principal Findings
Based on physiological models of avian colour vision we develop an index to quantify the degree of discriminable colour variation as it can be perceived by conspecifics. A comparison of variability in ornamental and non-ornamental colours in six bird species confirmed (a) that those coloured patches that are sexually selected or act as indicators of quality show increased chromatic variability. However, we found no support for (b) that males generally show higher levels of variability than females, or (c) that sexual dichromatism per se is associated with increased variability.
Conclusions/Significance
We show that it is currently possible to realistically estimate variability of animal colours as perceived by them, something difficult to achieve with other traits. Increased variability of known sexually-selected/quality-indicating colours in the studied species, provides support to the predictions borne from sexual selection theory but the lack of increased overall variability in males or dimorphic colours in general indicates that sexual differences might not always be shaped by similar selective forces
Are Cuckoos Maximizing Egg Mimicry by Selecting Host Individuals with Better Matching Egg Phenotypes?
Background: Avian brood parasites and their hosts are involved in complex offence-defense coevolutionary arms races. The most common pair of reciprocal adaptations in these systems is egg discrimination by hosts and egg mimicry by parasites. As mimicry improves, more advanced host adaptations evolve such as decreased intra- and increased interclutch variation in egg appearance to facilitate detection of parasitic eggs. As interclutch variation increases, parasites able to choose hosts matching best their own egg phenotype should be selected, but this requires that parasites know their own egg phenotype and select host nests correspondingly. Methodology/Principal Findings: We compared egg mimicry of common cuckoo Cuculus canorus eggs in naturally parasitized marsh warbler Acrocephalus palustris nests and their nearest unparasitized conspecific neighbors having similar laying dates and nest-site characteristics. Modeling of avian vision and image analyses revealed no evidence that cuckoos parasitize nests where their eggs better match the host eggs. Cuckoo eggs were as good mimics, in terms of background and spot color, background luminance, spotting pattern and egg size, of host eggs in the nests actually exploited as those in the neighboring unparasitized nests. Conclusions/Significance: We reviewed the evidence for brood parasites selecting better-matching host egg phenotypes from several relevant studies and argue that such selection probably cannot exist in host-parasite systems where hos
Early Fasting Is Long Lasting: Differences in Early Nutritional Conditions Reappear under Stressful Conditions in Adult Female Zebra Finches
Conditions experienced during early life can have profound effects on individual development and condition in adulthood. Differences in nutritional provisioning in birds during the first month of life can lead to differences in growth, reproductive success and survival. Yet, under natural conditions shorter periods of nutritional stress will be more prevalent. Individuals may respond differently, depending on the period of development during which nutritional stress was experienced. Such differences may surface specifically when poor environmental conditions challenge individuals again as adults. Here, we investigated long term consequences of differences in nutritional conditions experienced during different periods of early development by female zebra finches (Taeniopygia guttata) on measures of management and acquisition of body reserves. As nestlings or fledglings, subjects were raised under different nutritional conditions, a low or high quality diet. After subjects reached sexual maturity, we measured their sensitivity to periods of food restriction, their exploration and foraging behaviour as well as adult resting metabolic rate (RMR). During a short period of food restriction, subjects from the poor nutritional conditions had a higher body mass loss than those raised under qualitatively superior nutritional conditions. Moreover, subjects that were raised under poor nutritional conditions were faster to engage in exploratory and foraging behaviour. But RMR did not differ among treatments. These results reveal that early nutritional conditions affect adult exploratory behaviour, a representative personality trait, foraging and adult's physiological condition. As early nutritional conditions are reflected in adult phenotypic plasticity specifically when stressful situations reappear, the results suggest that costs for poor developmental conditions are paid when environmental conditions deteriorate
BORIS, a paralogue of the transcription factor, CTCF, is aberrantly expressed in breast tumours
BORIS (for brother of the regulator of imprinted sites), a paralogue of the transcription factor, CTCF, is a novel member of the cancer-testis antigen family. The aims of the present study were as follows: (1) to investigate BORIS expression in breast cells and tumours using immunohistochemical staining, western and real-time RT–PCR analyses and (2) assess potential correlation between BORIS levels in tumours with clinical/pathological parameters. BORIS was detected in all 18 inspected breast cell lines, but not in a primary normal breast cell culture. In 70.7% (41 of 58 cases) BORIS was observed in breast tumours. High levels of BORIS correlated with high levels of progesterone receptor (PR) and oestrogen receptor (ER). The link between BORIS and PR/ER was further confirmed by the ability of BORIS to activate the promoters of the PR and ER genes in the reporter assays. Detection of BORIS in a high proportion of breast cancer patients implies potential practical applications of BORIS as a molecular biomarker of breast cancer. This may be important for diagnosis of the condition and for the therapeutic use of BORIS. The ability of BORIS to activate promoters of the RP and ER genes points towards possible involvement of BORIS in the establishment, progression and maintenance of breast tumours
Complex Feeding Tracks of the Sessile Herbivorous Insect Ophiomyia maura as a Function of the Defense against Insect Parasitoids
Because insect herbivores generally suffer from high mortality due to their natural enemies, reducing the risk of being located by natural enemies is of critical importance for them, forcing them to develop a variety of defensive measures. Larvae of leaf-mining insects lead a sedentary life inside a leaf and make conspicuous feeding tracks called mines, exposing themselves to the potential risk of parasitism. We investigated the defense strategy of the linear leafminer Ophiomyia maura Meigen (Diptera: Agromyzidae), by focusing on its mining patterns. We examined whether the leafminer could reduce the risk of being parasitized (1) by making cross structures in the inner area of a leaf to deter parasitoids from tracking the mines due to complex pathways, and (2) by mining along the edge of a leaf to hinder visually searching parasitoids from finding mined leaves due to effective background matching of the mined leaves among intact leaves. We quantified fractal dimension as mine complexity and area of mine in the inner area of the leaf as interior mine density for each sample mine, and analyzed whether these mine traits affected the susceptibility of O. maura to parasitism. Our results have shown that an increase in mine complexity with the development of occupying larvae decreases the probability of being parasitized, while interior mine density has no influence on parasitism. These results suggest that the larval development increases the host defense ability through increasing mine complexity. Thus the feeding pattern of these sessile insects has a defensive function by reducing the risk of parasitism
Color polymorphism in a land snail Cepaea nemoralis (Pulmonata: Helicidae) as viewed by potential avian predators
Variability in Avian Eggshell Colour: A Comparative Study of Museum Eggshells
Background: The exceptional diversity of coloration found in avian eggshells has long fascinated biologists and inspired a broad range of adaptive hypotheses to explain its evolution. Three main impediments to understanding the variability of eggshell appearance are: (1) the reliable quantification of the variation in eggshell colours; (2) its perception by birds themselves, and (3) its relation to avian phylogeny. Here we use an extensive museum collection to address these problems directly, and to test how diversity in eggshell coloration is distributed among different phylogenetic levels of the class Aves. Methodology and Results: Spectrophotometric data on eggshell coloration were collected from a taxonomically representative sample of 251 bird species to determine the change in reflectance across different wavelengths and the taxonomic level where the variation resides. As many hypotheses for the evolution of eggshell coloration assume that egg colours provide a communication signal for an avian receiver, we also modelled reflectance spectra of shell coloration for the avian visual system. We found that a majority of species have eggs with similar background colour (long wavelengths) but that striking differences are just as likely to occur between congeners as between members of different families. The region of greatest variability in eggshell colour among closely related species coincided with the medium-wavelength sensitive region around 500 nm. Conclusions: The majority of bird species share similar background eggshell colours, while the greatest variability among species aligns with differences along a red-brown to blue axis that most likely corresponds with variation in the presence and concentration of two tetrapyrrole pigments responsible for eggshell coloration. Additionally, our results confirm previous findings of temporal changes in museum collections, and this will be of particular concern for studies testing intraspecific hypotheses relating temporal patterns to adaptation of eggshell colour. We suggest that future studies investigating the phylogenetic association between the composition and concentration of eggshell pigments, and between the evolutionary drivers and functional impacts of eggshell colour variability will be most rewarding.Phillip Cassey, Steven J. Portugal, Golo Maurer, John G. Ewen, Rebecca L. Boulton, Mark E. Hauber and Tim M. Blackbur
- …
