61 research outputs found
Pacific circulation response to eastern Arctic sea ice reduction in seasonal forecast simulations
Recent studies point to the sensitivity of mid-latitude winter climate to Arctic sea ice variability. However, there remain contradictory results in terms of character and timing of Northern Hemisphere large-scale circulation features to Arctic sea ice changes. This study assesses the impact of realistic late autumn eastern Arctic sea ice anomalies on atmospheric wintertime circulation at mid-latitudes, pointing to a hidden potential for seasonal predictability. Using a dynamical seasonal prediction system, an ensemble of seasonal forecast simulations of 23 historical winter seasons is run with reduced November sea ice cover in the Barents-Kara Seas, and is compared to the respective control seasonal hindcast simulations set. A non energy-conserving approach is adopted for achieving the desired sea ice loss, with artificial heat being added conditionally to the ocean surface heat fluxes so as to inhibit the formation of sea ice during November. Our results point to a robust atmospheric circulation response in the North Pacific sector, similar to previous findings on the multidecadal timescale. Specifically, an anticyclonic anomaly at upper and lower levels is identified over the eastern midlatitude North Pacific, leading to dry conditions over the North American southwest coast. The responses are related to a re-organization (weakening) of west-Pacific tropical convection and interactions with the tropical Hadley circulation. A possible interaction of the poleward-shifted Pacific eddy-driven jet stream and the Hadley cell is discussed. The winter circulation response in the Euro-Atlantic sector is ephemeral in character and statistically significant in January only, corroborating previous findings of an intermittent and non-stationary Arctic sea ice-NAO link during boreal winter. These results aid our understanding of the seasonal impacts of reduced eastern Arctic sea ice on the midlatitude atmospheric circulation with implications for seasonal predictability in wintertime
Management approaches and aquaculture of sturgeons in the Lower Danube region countries
Summary This paper presents the status and trends in management of sturgeon species and the development of sturgeon aquaculture in the Lower Danube countries: Romania, Bulgaria, Serbia, Ukraine and Moldova. Sturgeon fishery moratoria and aquaculture development represent first steps in the Lower Danube countries to combat extirpation. Supportive stocking was used as a compensation for the impact of sturgeon fishery and dam construction, but these efforts unfortunately lacked adequate cooperation and coordination between and among region countries. Unsolved problems remain, such as the presence of illegal sturgeon fishery, water pollution, habitat destruction and fragmentation. Construction of fish passes and habitat restoration project developments are two key issues that have yet to be tackled in the Lower Danube region
An extended mtDNA phylogeography for the alpine newt illuminates the provenance of introduced populations
Many herpetofauna species have been introduced outside of their native range. MtDNA barcoding is regularly used to determine the provenance of such populations. The alpine newt has been introduced across the Netherlands, the United Kingdom and Ireland. However, geographical mtDNA structure across the natural range of the alpine newt is still incompletely understood and certain regions are severely undersampled. We collect mtDNA sequence data of over seven hundred individuals, from both the native and the introduced range. The main new insights from our extended mtDNA phylogeography are that 1) haplotypes from Spain do not form a reciprocally monophyletic clade, but are nested inside the mtDNA clade that covers western and eastern Europe; and 2) haplotypes from the northwest Balkans form a monophyletic clade together with those from the Southern Carpathians and Apuseni Mountains. We also home in on the regions where the distinct mtDNA clades meet in nature. We show that four out of the seven distinct mtDNA clades that comprise the alpine newt are implicated in the introductions in the Netherlands, United Kingdom and Ireland. In several introduced localities, two distinct mtDNA clades co-occur. As these mtDNA clades presumably represent cryptic species, we urge that the extent of genetic admixture between them is assessed from genome-wide nuclear DNA markers. We mobilized a large number of citizen scientists in this project to support the collection of DNA samples by skin swabbing and underscore the effectiveness of this sampling technique for mtDNA barcoding
The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6
The Earth system model EC-Earth3 for contributions to CMIP6 is documented here, with its flexible coupling framework, major model configurations, a methodology for ensuring the simulations are comparable across different high-performance computing (HPC) systems, and with the physical performance of base configurations over the historical period. The variety of possible configurations and sub-models reflects the broad interests in the EC-Earth community. EC-Earth3 key performance metrics demonstrate physical behavior and biases well within the frame known from recent CMIP models. With improved physical and dynamic features, new Earth system model (ESM) components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond
Regional variation in the role of humidity on city-level heat-related mortality
The rising humid heat is regarded as a severe threat to human survivability, but the proper integration of humid heat into heat-health alerts is still being explored. Using state-of-the-art epidemiological and climatological datasets, we examined the association between multiple heat stress indicators (HSIs) and daily human mortality in 739 cities worldwide. Notable differences were observed in the long-term trends and timing of heat events detected by HSIs. Air temperature (Tair) predicts heat-related mortality well in cities with a robust negative Tair-relative humidity correlation (CT-RH). However, in cities with near-zero or weak positive CT-RH, HSIs considering humidity provide enhanced predictive power compared to Tair. Furthermore, the magnitude and timing of heat-related mortality measured by HSIs could differ largely from those associated with Tair in many cities. Our findings provide important insights into specific regions where humans are vulnerable to humid heat and can facilitate the further enhancement of heat-health alert systems. © The Author(s) 2024.Q.G., M.H., and T.O. were supported by the Environment Research and Technology Development Fund (JPMEERF23S21120) of the Environmental Restoration and Conservation Agency provided by the Ministry of the Environment of Japan. Q.G. was supported by the Musha Shugyo international travel grants from the School of Engineering, The University of Tokyo. T.O. was supported by the Japan Society for the Promotion of Science (KAKENHI: 21H05002), and the Environment Research and Technology Development Fund of the Environmental Restoration and Conservation Agency of Japan (JPMEERF23S21100). M.N.M. was supported by the European Commission (H2020-MSCA-IF-2020) under REA grant agreement no. 101022870. A.G. was supported by the Medical Research Council-UK (Grant ID: MR/V034162/1) and European Union’s Horizon 2020 Project Exhaustion (Grant ID: 820655). J.K. was supported by the Czech Science Foundation, project 23-06749S. A.M.V.-C. supported by the Swiss National Science Foundation (TMSGI3_211626). V.H. was supported by the European Union’s Horizon 2020 research and innovation program (H2020-MSCA-IF-2020, Grant No.: 101032087). Y.S. was supported by Brain Pool Plus program funded by the Ministry of Science and ICT through the National Research Foundation of Korea (NRF-2021H1D3A2A03097768), and the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2023R1A2C1004754)
The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6
The Earth system model EC-Earth3 for contributions to CMIP6 is documented here, with its flexible coupling framework, major model configurations, a methodology for ensuring the simulations are comparable across different high-performance computing (HPC) systems, and with the physical performance of base configurations over the historical period. The variety of possible configurations and sub-models reflects the broad interests in the EC-Earth community. EC-Earth3 key performance metrics demonstrate physical behavior and biases well within the frame known from recent CMIP models. With improved physical and dynamic features, new Earth system model (ESM) components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond
Consistency and discrepancy in the atmospheric response to Arctic sea-ice loss across climate models
This is the author accepted manuscript. The final version is available from Springer Nature via the DOI in this recordThe decline of Arctic sea ice is an integral part of anthropogenic climate change. Sea-ice loss is already having a significant impact on Arctic communities and ecosystems. Its role as a cause of climate changes outside of the Arctic has also attracted much scientific interest. Evidence is mounting that Arctic sea-ice loss can affect weather and climate throughout the Northern Hemisphere. The remote impacts of Arctic sea-ice loss can only be properly represented using models that simulate interactions among the ocean, sea ice, land and atmosphere. A synthesis of six such experiments with different models shows consistent hemispheric-wide atmospheric warming, strongest in the mid-to-high-latitude lower troposphere; an intensification of the wintertime Aleutian Low and, in most cases, the Siberian High; a weakening of the Icelandic Low; and a reduction in strength and southward shift of the mid-latitude westerly winds in winter. The atmospheric circulation response seems to be sensitive to the magnitude and geographic pattern of sea-ice loss and, in some cases, to the background climate state. However, it is unclear whether current-generation climate models respond too weakly to sea-ice change. We advocate for coordinated experiments that use different models and observational constraints to quantify the climate response to Arctic sea-ice loss.J.A.S. and R.B. were funded by the Natural Environment Research Council (NE/P006760/1). C.D. acknowledges the National Science Foundation (NSF), which sponsors the National Center for Atmospheric Research. D.M.S. was supported by the Met Office Hadley Centre Climate Programme (GA01101) and the APPLICATE project, which is funded by the European Union’s Horizon 2020 programme. X.Z. was supported by the NSF (ARC#1023592). P.J.K. and K.E.M. were supported by the Canadian Sea Ice and Snow Evolution Network, which is funded by the Natural Science and Engineering Research Council of Canada. T.O. was funded by Environment and Climate Change Canada (GCXE17S038). L.S. was supported by the National Oceanic and Atmospheric Administration’s Climate Program Office
Institutional investors and corporate governance
We provide a comprehensive overview of the role of institutional investors in corporate governance with three main components. First, we establish new stylized facts documenting the evolution and importance of institutional ownership. Second, we provide a detailed characterization of key aspects of the legal and regulatory setting within which institutional investors govern portfolio firms. Third, we synthesize the evolving response of the recent theoretical and empirical academic literature in finance to the emergence of institutional investors in corporate governance. We highlight how the defining aspect of institutional investors – the fact that they are financial intermediaries – differentiates them in their governance role from standard principal blockholders. Further, not all institutional investors are identical, and we pay close attention to heterogeneity amongst institutional investors as blockholders
Southern Ocean albedo, inter-hemispheric energy transports and the double ITCZ: global impacts of biases in a coupled model
Seasonality of mortality under climate change: a multicountry projection study
Data sharing:
All data used in our study were obtained from the MCC Collaborative Research Network under a data-sharing agreement and cannot be made publicly available. Researchers can refer to collaborators of the Network, who are listed as coauthors of this Article (primary contact: Antonio Gasparrini, [email protected]), for information on accessing the data for each country. The R code is available on request, and a reproducible example is publicly available on the personal GitHub website of the first author (https://github.com/LinaMadaniyazi).For more on the MCC see https://mccstudy.lshtm.ac.uk/Supplementary Material is available online at: https://www.sciencedirect.com/science/article/pii/S2542519623002693#sec1 .Background:
Climate change can directly impact temperature-related excess deaths and might subsequently change the seasonal variation in mortality. In this study, we aimed to provide a systematic and comprehensive assessment of potential future changes in the seasonal variation, or seasonality, of mortality across different climate zones.
Methods:
In this modelling study, we collected daily time series of mean temperature and mortality (all causes or non-external causes only) via the Multi-Country Multi-City Collaborative (MCC) Research Network. These data were collected during overlapping periods, spanning from Jan 1, 1969 to Dec 31, 2020. We projected daily mortality from Jan 1, 2000 to Dec 31, 2099, under four climate change scenarios corresponding to increasing emissions (Shared Socioeconomic Pathways [SSP] scenarios SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). We compared the seasonality in projected mortality between decades by its shape, timings (the day-of-year) of minimum (trough) and maximum (peak) mortality, and sizes (peak-to-trough ratio and attributable fraction). Attributable fraction was used to measure the burden of seasonality of mortality. The results were summarised by climate zones.
Findings:
The MCC dataset included 126 809 537 deaths from 707 locations within 43 countries or areas. After excluding the only two polar locations (both high-altitude locations in Peru) from climatic zone assessments, we analysed 126 766 164 deaths in 705 locations aggregated in four climate zones (tropical, arid, temperate, and continental). From the 2000s to the 2090s, our projections showed an increase in mortality during the warm seasons and a decrease in mortality during the cold seasons, albeit with mortality remaining high during the cold seasons, under all four SSP scenarios in the arid, temperate, and continental zones. The magnitude of this changing pattern was more pronounced under the high-emission scenarios (SSP3-7.0 and SSP5-8.5), substantially altering the shape of seasonality of mortality and, under the highest emission scenario (SSP5-8.5), shifting the mortality peak from cold seasons to warm seasons in arid, temperate, and continental zones, and increasing the size of seasonality in all zones except the arid zone by the end of the century. In the 2090s compared with the 2000s, the change in peak-to-trough ratio (relative scale) ranged from 0·96 to 1·11, and the change in attributable fraction ranged from 0·002% to 0·06% under the SSP5-8.5 (highest emission) scenario.
Interpretation:
A warming climate can substantially change the seasonality of mortality in the future. Our projections suggest that health-care systems should consider preparing for a potentially increased demand during warm seasons and sustained high demand during cold seasons, particularly in regions characterised by arid, temperate, and continental climates.This study was primarily supported by the Environment Research and Technology Development Fund (grant number JPMEERF20231007) of the Environmental Restoration and Conservation Agency, provided by the Ministry of the Environment of Japan. MH was supported by the Japan Science and Technology Agency as part of the Strategic International Collaborative Research Program (grant number JPMJSC20E4). AG was supported by the UK Medical Research Council (grant number MR/V034162/1) and the EU's Horizon 2020 research project Exhaustion (grant number 820655). AU and JK were supported by the Czech Science Foundation (project 22–24920S). JJKJ was supported by the Academy of Finland (grant number 310372; Global Health Risks Related to Atmospheric Composition and Weather Consortium). FS was supported by the Italian Ministry of University and Research, Department of Excellence project 2023–2027, Rethinking Data Science—Department of Statistics, Computer Science and Applications—University of Florence
- …
