109 research outputs found
Global Optimization by Energy Landscape Paving
We introduce a novel heuristic global optimization method, energy landscape
paving (ELP), which combines core ideas from energy surface deformation and
tabu search. In appropriate limits, ELP reduces to existing techniques. The
approach is very general and flexible and is illustrated here on two protein
folding problems. For these examples, the technique gives faster convergence to
the global minimum than previous approaches.Comment: to appear in Phys. Rev. Lett. (2002
Construction and completion of flux balance models from pathway databases
Motivation: Flux balance analysis (FBA) is a well-known technique for genome-scale modeling of metabolic flux. Typically, an FBA formulation requires the accurate specification of four sets: biochemical reactions, biomass metabolites, nutrients and secreted metabolites. The development of FBA models can be time consuming and tedious because of the difficulty in assembling completely accurate descriptions of these sets, and in identifying errors in the composition of these sets. For example, the presence of a single non-producible metabolite in the biomass will make the entire model infeasible. Other difficulties in FBA modeling are that model distributions, and predicted fluxes, can be cryptic and difficult to understand
Special Functions Related to Dedekind Type DC-Sums and their Applications
In this paper we construct trigonometric functions of the sum T_{p}(h,k),
which is called Dedekind type DC-(Dahee and Changhee) sums. We establish
analytic properties of this sum. We find trigonometric representations of this
sum. We prove reciprocity theorem of this sums. Furthermore, we obtain
relations between the Clausen functions, Polylogarithm function, Hurwitz zeta
function, generalized Lambert series (G-series), Hardy-Berndt sums and the sum
T_{p}(h,k). We also give some applications related to these sums and functions
Aspergillus as a multi-purpose cell factory: current status and perspectives
Aspergilli have a long history in biotechnology as expression platforms for the production of food ingredients, pharmaceuticals and enzymes. The achievements made during the last years, however, have the potential to revolutionize Aspergillus biotechnology and to assure Aspergillus a dominant place among microbial cell factories. This mini-review will highlight most recent breakthroughs in fundamental and applied Aspergillus research with a focus on new molecular tools, techniques and products. New trends and concepts related to Aspergillus genomics and systems biology will be discussed as well as the challenges that have to be met to integrate omics data with metabolic engineering attempts
Strategies for structuring interdisciplinary education in Systems Biology: an European perspective
Systems Biology is an approach to biology and medicine that has the potential to lead to a better understanding of how biological properties emerge from the interaction of genes, proteins, molecules, cells and organisms. The approach aims at elucidating how these interactions govern biological function by employing experimental data, mathematical models and computational simulations. As Systems Biology is inherently multidisciplinary, education within this field meets numerous hurdles including departmental barriers, availability of all required expertise locally, appropriate teaching material and example curricula. As university education at the Bachelor’s level is traditionally built upon disciplinary degrees, we believe that the most effective way to implement education in Systems Biology would be at the Master’s level, as it offers a more flexible framework. Our team of experts and active performers of Systems Biology education suggest here (i) a definition of the skills that students should acquire within a Master’s programme in Systems Biology, (ii) a possible basic educational curriculum with flexibility to adjust to different application areas and local research strengths, (iii) a description of possible career paths for students who undergo such an education, (iv) conditions that should improve the recruitment of students to such programmes and (v) mechanisms for collaboration and excellence spreading among education professionals. With the growing interest of industry in applying Systems Biology approaches in their fields, a concerted action between academia and industry is needed to build this expertise. Here we present a reflection of the European situation and expertise, where most of the challenges we discuss are universal, anticipating that our suggestions will be useful internationally. We believe that one of the overriding goals of any Systems Biology education should be a student’s ability to phrase and communicate research questions in such a manner that they can be solved by the integration of experiments and modelling, as well as to communicate and collaborate productively across different experimental and theoretical disciplines in research and development
Investigating the physiological response of Pichia (Komagataella) pastoris GS115 to the heterologous expression of misfolded proteins using chemostat cultures
Chemical applications of triply periodic minimal surfaces
SIGLEAvailable from British Library Document Supply Centre-DSC:D064069 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
- …
