100 research outputs found

    New skyrmions in the attractive Hubbard model with broken SO(4) symmetry

    Full text link
    The coexistence of superconducting and charge-density-wave order in the half-filled attractive Hubbard model is interpreted as a consequence of the pseudospin SU(2) symmetry spontaneously broken to a `hidden' subgroup U(1). By topological arguments we show that there must exist new skyrmion textures associated with this symmetry breakdown. This fact is illustrated via a non-linear σ\sigma-model. Unlike the spin textures previously known in an antiferromagnetic background, doping the model away from half-filling leads the new skyrmions to unwrap.Comment: 10 pages, 1 table, final version to be published in Phys. Lett.

    Simulation of strongly correlated fermions in two spatial dimensions with fermionic Projected Entangled-Pair States

    Get PDF
    We explain how to implement, in the context of projected entangled-pair states (PEPS), the general procedure of fermionization of a tensor network introduced in [P. Corboz, G. Vidal, Phys. Rev. B 80, 165129 (2009)]. The resulting fermionic PEPS, similar to previous proposals, can be used to study the ground state of interacting fermions on a two-dimensional lattice. As in the bosonic case, the cost of simulations depends on the amount of entanglement in the ground state and not directly on the strength of interactions. The present formulation of fermionic PEPS leads to a straightforward numerical implementation that allowed us to recycle much of the code for bosonic PEPS. We demonstrate that fermionic PEPS are a useful variational ansatz for interacting fermion systems by computing approximations to the ground state of several models on an infinite lattice. For a model of interacting spinless fermions, ground state energies lower than Hartree-Fock results are obtained, shifting the boundary between the metal and charge-density wave phases. For the t-J model, energies comparable with those of a specialized Gutzwiller-projected ansatz are also obtained.Comment: 25 pages, 35 figures (revised version

    Monte Carlo study of fermionic trions in a square lattice with harmonic confinement

    Full text link
    We investigate the strong-coupling limit of a three-component Fermi mixture in an optical lattice with attractive interactions. In this limit bound states (trions) of the three components are formed. We derive an effective Hamiltonian for these composite fermions and show that it is asymptotically equivalent to an antiferromagnetic Ising model. By using Monte-Carlo simulations, we investigate the spatial arrangement of the trions and the formation of a trionic density wave (CDW), both in a homogeneous lattice and in the presence of an additional harmonic confinement. Depending on the strength of the confinement and on the temperature, we found several scenarios for the trionic distribution, including coexistence of disordered trions with CDW and band insulator phases. Our results show that, due to a proximity effect, staggered density modulations are induced in regions of the trap where they would not otherwise be present according to the local density approximation.Comment: 10 pages, 8 figure

    Safe Sleep

    Get PDF
    Many parents and healthcare providers are either unsure of safe sleep practices or fail to implement them. This presentation will display safe sleep guidelines that are recommended by the American Academy of Pediatrics

    Partially gapped fermions in 2D

    Full text link
    We compute mean field phase diagrams of two closely related interacting fermion models in two spatial dimensions (2D). The first is the so-called 2D t-t'-V model describing spinless fermions on a square lattice with local hopping and density-density interactions. The second is the so-called 2D Luttinger model that provides an effective description of the 2D t-t'-V model and in which parts of the fermion degrees of freedom are treated exactly by bosonization. In mean field theory, both models have a charge-density-wave (CDW) instability making them gapped at half-filling. The 2D t-t'-V model has a significant parameter regime away from half-filling where neither the CDW nor the normal state are thermodynamically stable. We show that the 2D Luttinger model allows to obtain more detailed information about this mixed region. In particular, we find in the 2D Luttinger model a partially gapped phase that, as we argue, can be described by an exactly solvable model.Comment: v1: 36 pages, 10 figures, v2: minor corrections; equation references to arXiv:0903.0055 updated

    Phase separation in a lattice model of a superconductor with pair hopping

    Get PDF
    We have studied the extended Hubbard model with pair hopping in the atomic limit for arbitrary electron density and chemical potential. The Hamiltonian considered consists of (i) the effective on-site interaction U and (ii) the intersite charge exchange interactions I, determining the hopping of electron pairs between nearest-neighbour sites. The model can be treated as a simple effective model of a superconductor with very short coherence length in which electrons are localized and only electron pairs have possibility of transferring. The phase diagrams and thermodynamic properties of this model have been determined within the variational approach, which treats the on-site interaction term exactly and the intersite interactions within the mean-field approximation. We have also obtained rigorous results for a linear chain (d=1) in the ground state. Moreover, at T=0 some results derived within the random phase approximation (and the spin-wave approximation) for d=2 and d=3 lattices and within the low density expansions for d=3 lattices are presented. Our investigation of the general case (as a function of the electron concentration and as a function of the chemical potential) shows that, depending on the values of interaction parameters, the system can exhibit not only the homogeneous phases: superconducting (SS) and nonordered (NO), but also the phase separated states (PS: SS-NO). The system considered exhibits interesting multicritical behaviour including tricritical points.Comment: 15 pages, 9 figures; pdf-ReVTeX, final version, corrected typos; submitted to Journal of Physics: Condensed Matte

    The impact of prices and control policies on cigarette smoking among college students

    Get PDF

    Swift X-Ray Observations of Classical Novae. II. The Super Soft Source sample

    Full text link
    The Swift GRB satellite is an excellent facility for studying novae. Its rapid response time and sensitive X-ray detector provides an unparalleled opportunity to investigate the previously poorly sampled evolution of novae in the X-ray regime. This paper presents Swift observations of 52 Galactic/Magellanic Cloud novae. We included the XRT (0.3-10 keV) X-ray instrument count rates and the UVOT (1700-8000 Angstroms) filter photometry. Also included in the analysis are the publicly available pointed observations of 10 additional novae the X-ray archives. This is the largest X-ray sample of Galactic/Magellanic Cloud novae yet assembled and consists of 26 novae with super soft X-ray emission, 19 from Swift observations. The data set shows that the faster novae have an early hard X-ray phase that is usually missing in slower novae. The Super Soft X-ray phase occurs earlier and does not last as long in fast novae compared to slower novae. All the Swift novae with sufficient observations show that novae are highly variable with rapid variability and different periodicities. In the majority of cases, nuclear burning ceases less than 3 years after the outburst begins. Previous relationships, such as the nuclear burning duration vs. t_2 or the expansion velocity of the eject and nuclear burning duration vs. the orbital period, are shown to be poorly correlated with the full sample indicating that additional factors beyond the white dwarf mass and binary separation play important roles in the evolution of a nova outburst. Finally, we confirm two optical phenomena that are correlated with strong, soft X-ray emission which can be used to further increase the efficiency of X-ray campaigns.Comment: Accepted to ApJ Supplements. Full data for Table 2 and Figure 17 available in the electronic edition. New version of the previously posted paper since the earlier version was all set in landscape mod
    corecore