1,617 research outputs found
Shutdown is a component of the Drosophila piRNA biogenesis machinery
In animals, the piRNA pathway preserves the integrity of gametic genomes, guarding them against the activity of mobile genetic elements. This innate immune mechanism relies on distinct genomic loci, termed piRNA clusters, to provide a molecular definition of transposons, enabling their discrimination from genes. piRNA clusters give rise to long, single-stranded precursors, which are processed into primary piRNAs through an unknown mechanism. These can engage in an adaptive amplification loop, the ping-pong cycle, to optimize the content of small RNA populations via the generation of secondary piRNAs.Many proteins have been ascribed functions in either primary biogenesis or the ping-pong cycle, though for the most part the molecular functions of proteins implicated in these pathways remain obscure. Here, we link shutdown (shu), a gene previously shown to be required for fertility in Drosophila, to the piRNA pathway. Analysis of knockdown phenotypes in both the germline and somatic compartments of the ovary demonstrate important roles for shutdown in both primary biogenesis and the ping-pong cycle. shutdown is a member of the FKBP family of immunophilins. Shu contains domains implicated in peptidyl-prolyl cis-trans isomerase activity and in the binding of HSP90-family chaperones, though the relevance of these domains to piRNA biogenesis is unknown. Published by Cold Spring Harbor Laboratory Press. Copyright © 2012 RNA Society
The Gravity Dual of a Density Matrix
For a state in a quantum field theory on some spacetime, we can associate a
density matrix to any subset of a given spacelike slice by tracing out the
remaining degrees of freedom. In the context of the AdS/CFT correspondence, if
the original state has a dual bulk spacetime with a good classical description,
it is natural to ask how much information about the bulk spacetime is carried
by the density matrix for such a subset of field theory degrees of freedom. In
this note, we provide several constraints on the largest region that can be
fully reconstructed, and discuss specific proposals for the geometric
construction of this dual region.Comment: 19 pages, LaTeX, 8 figures, v2: footnote and reference adde
Polarizing Bubble Collisions
We predict the polarization of cosmic microwave background (CMB) photons that
results from a cosmic bubble collision. The polarization is purely E-mode,
symmetric around the axis pointing towards the collision bubble, and has
several salient features in its radial dependence that can help distinguish it
from a more conventional explanation for unusually cold or hot features in the
CMB sky. The anomalous "cold spot" detected by the Wilkinson Microwave
Anisotropy Probe (WMAP) satellite is a candidate for a feature produced by such
a collision, and the Planck satellite and other proposed surveys will measure
the polarization on it in the near future. The detection of such a collision
would provide compelling evidence for the string theory landscape.Comment: Published version. 15 pages, 8 figure
Bubble collisions and measures of the multiverse
To compute the spectrum of bubble collisions seen by an observer in an
eternally-inflating multiverse, one must choose a measure over the diverging
spacetime volume, including choosing an "initial" hypersurface below which
there are no bubble nucleations. Previous calculations focused on the case
where the initial hypersurface is pushed arbitrarily deep into the past.
Interestingly, the observed spectrum depends on the orientation of the initial
hypersurface, however one's ability observe the effect rapidly decreases with
the ratio of inflationary Hubble rates inside and outside one's bubble. We
investigate whether this conclusion might be avoided under more general
circumstances, in particular placing the observer's bubble near the initial
hypersurface. We find that it is not. As a point of reference, a substantial
appendix reviews relevant aspects of the measure problem of eternal inflation.Comment: 24 pages, two figures, plus 16-page appendix with one figure; v2:
minor improvements and clarifications, conclusions unchanged (version to
appear in JCAP
A Theory of a Spot
We present a simple inflationary scenario that can produce arbitrarily large
spherical underdense or overdense regions embedded in a standard Lambda cold
dark matter paradigm, which we refer to as bubbles. We analyze the effect such
bubbles would have on the Cosmic Microwave Background (CMB). For super-horizon
sized bubble in the vicinity of the last scattering surface, a signal is
imprinted onto CMB via a combination of Sach-Wolfe and an early integrated
Sach-Wolfe (ISW) effects. Smaller, sub-horizon sized bubbles at lower redshifts
(during matter domination and later) can imprint secondary anisotropies on the
CMB via Rees-Sciama, late-time ISW and Ostriker-Vishniac effects. Our scenario,
and arguably most similar inflationary models, produce bubbles which are
over/underdense in potential: in density such bubbles are characterized by
having a distinct wall with the interior staying at the cosmic mean density. We
show that such models can potentially, with only moderate fine tuning, explain
the \emph{cold spot}, a non-Gaussian feature identified in the Wilkinson
Microwave Anisotropy Probe (WMAP) data by several authors. However, more
detailed comparisons with current and future CMB data are necessary to confirm
(or rule out) this scenario.Comment: 19 pages, 19 figures, added references and explanations, JCAP in
pres
Universal scaling properties of extremal cohesive holographic phases
We show that strongly-coupled, translation-invariant holographic IR phases at
finite density can be classified according to the scaling behaviour of the
metric, the electric potential and the electric flux introducing four critical
exponents, independently of the details of the setup. Solutions fall into two
classes, depending on whether they break relativistic symmetry or not. The
critical exponents determine key properties of these phases, like thermodynamic
stability, the (ir)relevant deformations around them, the low-frequency scaling
of the optical conductivity and the nature of the spectrum for electric
perturbations. We also study the scaling behaviour of the electric flux through
bulk minimal surfaces using the Hartnoll-Radicevic order parameter, and
characterize the deviation from the Ryu-Takayanagi prescription in terms of the
critical exponents.Comment: v4: corrected a typo in eqn (3.29), now (3.28). Conclusions unchange
Analytical and computational study of magnetization switching in kinetic Ising systems with demagnetizing fields
An important aspect of real ferromagnetic particles is the demagnetizing
field resulting from magnetostatic dipole-dipole interaction, which causes
large particles to break up into domains. Sufficiently small particles,
however, remain single-domain in equilibrium. This makes such small particles
of particular interest as materials for high-density magnetic recording media.
In this paper we use analytic arguments and Monte Carlo simulations to study
the effect of the demagnetizing field on the dynamics of magnetization
switching in two-dimensional, single-domain, kinetic Ising systems. For systems
in the ``Stochastic Region,'' where magnetization switching is on average
effected by the nucleation and growth of fewer than two well-defined critical
droplets, the simulation results can be explained by the dynamics of a simple
model in which the free energy is a function only of magnetization. In the
``Multi-Droplet Region,'' a generalization of Avrami's Law involving a
magnetization-dependent effective magnetic field gives good agreement with our
simulations.Comment: 29 pages, REVTeX 3.0, 10 figures, 2 more figures by request.
Submitted Phys. Rev.
Isotopic Dependence of the Nuclear Caloric Curve
The A/Z dependence of projectile fragmentation at relativistic energies has
been studied with the ALADIN forward spectrometer at SIS. A stable beam of
124Sn and radioactive beams of 124La and 107Sn at 600 MeV per nucleon have been
used in order to explore a wide range of isotopic compositions. Chemical
freeze-out temperatures are found to be nearly invariant with respect to the
A/Z of the produced spectator sources, consistent with predictions for expanded
systems. Small Coulomb effects (\Delta T \approx 0.6 MeV) appear for residue
production near the onset of multifragmentation.Comment: 11 pages, 3 figures, accepted for publ. in Phys. Rev. Let
Tracing a phase transition with fluctuations of the largest fragment size: Statistical multifragmentation models and the ALADIN S254 data
A phase transition signature associated with cumulants of the largest
fragment size distribution has been identified in statistical
multifragmentation models and examined in analysis of the ALADIN S254 data on
fragmentation of neutron-poor and neutron-rich projectiles. Characteristics of
the transition point indicated by this signature are weakly dependent on the
A/Z ratio of the fragmenting spectator source. In particular, chemical
freeze-out temperatures are estimated within the range 5.9 to 6.5 MeV. The
experimental results are well reproduced by the SMM model.Comment: 7 pages, 3 figures, Proceedings of the International Workshop on
Multifragmentation and Related Topics (IWM2009), Catania, Italy, November
2009
Neutron recognition in the LAND detector for large neutron multiplicity
The performance of the LAND neutron detector is studied. Using an
event-mixing technique based on one-neutron data obtained in the S107
experiment at the GSI laboratory, we test the efficiency of various analytic
tools used to determine the multiplicity and kinematic properties of detected
neutrons. A new algorithm developed recently for recognizing neutron showers
from spectator decays in the ALADIN experiment S254 is described in detail. Its
performance is assessed in comparison with other methods. The properties of the
observed neutron events are used to estimate the detection efficiency of LAND
in this experiment.Comment: 16 pages, 8 figure
- …
