1,866 research outputs found
Obscuration model of Variability in AGN
There are strong suggestions that the disk-like accretion flow onto massive
black hole in AGN is disrupted in its innermost part (10-100 Rg), possibly due
to the radiation pressure instability. It may form a hot optically thin quasi
spherical (ADAF) flow surrounded by or containing denser clouds due to the
disruption of the disk. Such clouds might be optically thick, with a Thompson
depth of order of 10 or more. Within the frame of this cloud scenario
(Collin-Souffrin et al. 1996, Czerny & Dumont 1998), obscuration events are
expected and the effect would be seen as a variability. We consider expected
random variability due to statistical dispersion in location of clouds along
the line of sight for a constant covering factor. We discuss a simple
analytical toy model which provides us with the estimates of the mean spectral
properties and variability amplitude of AGN, and we support them with radiative
transfer computations done with the use of TITAN code of Dumont, Abrassart &
Collin (1999) and NOAR code of Abrassart (1999).Comment: to appear in Proc. of 5th Compton Symposium on Gamma-Ray Astronomy
and Astrophysic
Modeling the X-ray fractional variability spectrum of Active Galactic Nuclei using multiple flares
Using Monte-Carlo simulations of X-ray flare distributions across the
accretion disk of active galactic nuclei (AGN), we obtain modeling results for
the energy-dependent fractional variability amplitude. Referring to previous
results of this model, we illustrate the relation between the shape of the
point-to-point fractional variability spectrum, F_pp, and the time-integrated
spectral energy distribution, F_E. The results confirm that the spectral shape
and variability of the iron Kalpha line are dominated by the flares closest to
the disk center.Comment: 2 pages, 1 figure, conference proceedings of the AGN meeting held in
October 2006 in Xi'an, China. To appear in "The Central Engine of Active
Galactic Nuclei", ed. L. C. Ho and J.-M. Wang (San Francisco: ASP
Iron lines from transient and persisting hot spots on AGN accretion disks
[abridged] We model the X-ray reprocessing from a strong co-rotating flare
above an accretion disk in active galactic nuclei. We explore the horizontal
structure and evolution of the underlying hot spot. To obtain the spectral
evolution seen by a distant observer, we apply a general relativity ray-tracing
technique. We concentrate on the energy band around the iron K-line, where the
relativistic effects are most pronounced. Persistent flares lasting for a
significant fraction of the orbital time scale and short, transient flares are
considered. In our time-resolved analysis, the spectra recorded by a distant
observer depend on the position of the flare/spot with respect to the central
black hole. If the flare duration significantly exceeds the light travel time
across the spot, then the spot horizontal stratification is unimportant. On the
other hand, if the flare duration is comparable to the light travel time across
the spot radius, the lightcurves exhibit a typical asymmetry in their time
profiles. The sequence of dynamical spectra proceeds from more strongly to less
strongly ionized re-emission. At all locations within the spot the spectral
intensity increases towards edge-on emission angles, revealing the limb
brightening effect. Future X-ray observatories with significantly larger
effective collecting areas will enable to spectroscopically map out the
azimuthal irradiation structure of the accretion disk and to localize
persistent flares. If the hot spot is not located too close to the marginally
stable orbit of the black hole, it will be possible to probe the reflecting
medium via the sub-structure of the iron K-line. Indications for transient
flares will only be obtained from analyzing the observed lightcurves on the
gravitational time scale of the accreting supermassive black hole.Comment: 15 pages, 8 figures, accepted by Astronomy & Astrophysic
- …
