1,866 research outputs found

    Obscuration model of Variability in AGN

    Full text link
    There are strong suggestions that the disk-like accretion flow onto massive black hole in AGN is disrupted in its innermost part (10-100 Rg), possibly due to the radiation pressure instability. It may form a hot optically thin quasi spherical (ADAF) flow surrounded by or containing denser clouds due to the disruption of the disk. Such clouds might be optically thick, with a Thompson depth of order of 10 or more. Within the frame of this cloud scenario (Collin-Souffrin et al. 1996, Czerny & Dumont 1998), obscuration events are expected and the effect would be seen as a variability. We consider expected random variability due to statistical dispersion in location of clouds along the line of sight for a constant covering factor. We discuss a simple analytical toy model which provides us with the estimates of the mean spectral properties and variability amplitude of AGN, and we support them with radiative transfer computations done with the use of TITAN code of Dumont, Abrassart & Collin (1999) and NOAR code of Abrassart (1999).Comment: to appear in Proc. of 5th Compton Symposium on Gamma-Ray Astronomy and Astrophysic

    Modeling the X-ray fractional variability spectrum of Active Galactic Nuclei using multiple flares

    Get PDF
    Using Monte-Carlo simulations of X-ray flare distributions across the accretion disk of active galactic nuclei (AGN), we obtain modeling results for the energy-dependent fractional variability amplitude. Referring to previous results of this model, we illustrate the relation between the shape of the point-to-point fractional variability spectrum, F_pp, and the time-integrated spectral energy distribution, F_E. The results confirm that the spectral shape and variability of the iron Kalpha line are dominated by the flares closest to the disk center.Comment: 2 pages, 1 figure, conference proceedings of the AGN meeting held in October 2006 in Xi'an, China. To appear in "The Central Engine of Active Galactic Nuclei", ed. L. C. Ho and J.-M. Wang (San Francisco: ASP

    Iron lines from transient and persisting hot spots on AGN accretion disks

    Full text link
    [abridged] We model the X-ray reprocessing from a strong co-rotating flare above an accretion disk in active galactic nuclei. We explore the horizontal structure and evolution of the underlying hot spot. To obtain the spectral evolution seen by a distant observer, we apply a general relativity ray-tracing technique. We concentrate on the energy band around the iron K-line, where the relativistic effects are most pronounced. Persistent flares lasting for a significant fraction of the orbital time scale and short, transient flares are considered. In our time-resolved analysis, the spectra recorded by a distant observer depend on the position of the flare/spot with respect to the central black hole. If the flare duration significantly exceeds the light travel time across the spot, then the spot horizontal stratification is unimportant. On the other hand, if the flare duration is comparable to the light travel time across the spot radius, the lightcurves exhibit a typical asymmetry in their time profiles. The sequence of dynamical spectra proceeds from more strongly to less strongly ionized re-emission. At all locations within the spot the spectral intensity increases towards edge-on emission angles, revealing the limb brightening effect. Future X-ray observatories with significantly larger effective collecting areas will enable to spectroscopically map out the azimuthal irradiation structure of the accretion disk and to localize persistent flares. If the hot spot is not located too close to the marginally stable orbit of the black hole, it will be possible to probe the reflecting medium via the sub-structure of the iron K-line. Indications for transient flares will only be obtained from analyzing the observed lightcurves on the gravitational time scale of the accreting supermassive black hole.Comment: 15 pages, 8 figures, accepted by Astronomy & Astrophysic
    corecore