150 research outputs found

    Tiling in bipartite graphs with asymmetric minimum degrees

    Full text link
    The problem of determining the optimal minimum degree condition for a balanced bipartite graph on 2ms vertices to contain m vertex disjoint copies of K_{s,s} was solved by Zhao. Later Hladk\'y and Schacht, and Czygrinow and DeBiasio determined the optimal minimum degree condition for a balanced bipartite graph on 2m(s+t) vertices to contain m vertex disjoint copies of K_{s,t} for fixed positive integers s<t. For a balanced bipartite graph G[U,V], let \delta_U be the minimum degree over all vertices in U and \delta_V be the minimum degree over all vertices in V. We consider the problem of determining the optimal value of \delta_U+\delta_V which guarantees that G can be tiled with K_{s,s}. We show that the optimal value depends on D:=|\delta_V-\delta_U|. When D is small, we show that \delta_U+\delta_V\geq n+3s-5 is best possible. As D becomes larger, we show that \delta_U+\delta_V can be made smaller, but no smaller than n+2s-2s^{1/2}. However, when D=n-C for some constant C, we show that there exist graphs with \delta_U+\delta_V\geq n+s^{s^{1/3}} which cannot be tiled with K_{s,s}.Comment: 34 pages, 4 figures. This is the unabridged version of the paper, containing the full proof of Theorem 1.7. The case when |\delta_U-\delta_V| is small and s>2 involves a lengthy case analysis, spanning pages 20-32; this section is not included in the "journal version

    Pebbling in Dense Graphs

    Full text link
    A configuration of pebbles on the vertices of a graph is solvable if one can place a pebble on any given root vertex via a sequence of pebbling steps. The pebbling number of a graph G is the minimum number pi(G) so that every configuration of pi(G) pebbles is solvable. A graph is Class 0 if its pebbling number equals its number of vertices. A function is a pebbling threshold for a sequence of graphs if a randomly chosen configuration of asymptotically more pebbles is almost surely solvable, while one of asymptotically fewer pebbles is almost surely not. Here we prove that graphs on n>=9 vertices having minimum degree at least floor(n/2) are Class 0, as are bipartite graphs with m>=336 vertices in each part having minimum degree at least floor(m/2)+1. Both bounds are best possible. In addition, we prove that the pebbling threshold of graphs with minimum degree d, with sqrt{n} << d, is O(n^{3/2}/d), which is tight when d is proportional to n.Comment: 10 page

    Distributed Approximation of Maximum Independent Set and Maximum Matching

    Full text link
    We present a simple distributed Δ\Delta-approximation algorithm for maximum weight independent set (MaxIS) in the CONGEST\mathsf{CONGEST} model which completes in O(MIS(G)logW)O(\texttt{MIS}(G)\cdot \log W) rounds, where Δ\Delta is the maximum degree, MIS(G)\texttt{MIS}(G) is the number of rounds needed to compute a maximal independent set (MIS) on GG, and WW is the maximum weight of a node. %Whether our algorithm is randomized or deterministic depends on the \texttt{MIS} algorithm used as a black-box. Plugging in the best known algorithm for MIS gives a randomized solution in O(lognlogW)O(\log n \log W) rounds, where nn is the number of nodes. We also present a deterministic O(Δ+logn)O(\Delta +\log^* n)-round algorithm based on coloring. We then show how to use our MaxIS approximation algorithms to compute a 22-approximation for maximum weight matching without incurring any additional round penalty in the CONGEST\mathsf{CONGEST} model. We use a known reduction for simulating algorithms on the line graph while incurring congestion, but we show our algorithm is part of a broad family of \emph{local aggregation algorithms} for which we describe a mechanism that allows the simulation to run in the CONGEST\mathsf{CONGEST} model without an additional overhead. Next, we show that for maximum weight matching, relaxing the approximation factor to (2+ε2+\varepsilon) allows us to devise a distributed algorithm requiring O(logΔloglogΔ)O(\frac{\log \Delta}{\log\log\Delta}) rounds for any constant ε>0\varepsilon>0. For the unweighted case, we can even obtain a (1+ε)(1+\varepsilon)-approximation in this number of rounds. These algorithms are the first to achieve the provably optimal round complexity with respect to dependency on Δ\Delta

    Exact bounds for distributed graph colouring

    Full text link
    We prove exact bounds on the time complexity of distributed graph colouring. If we are given a directed path that is properly coloured with nn colours, by prior work it is known that we can find a proper 3-colouring in 12log(n)±O(1)\frac{1}{2} \log^*(n) \pm O(1) communication rounds. We close the gap between upper and lower bounds: we show that for infinitely many nn the time complexity is precisely 12logn\frac{1}{2} \log^* n communication rounds.Comment: 16 pages, 3 figure

    A Local Computation Approximation Scheme to Maximum Matching

    Full text link
    We present a polylogarithmic local computation matching algorithm which guarantees a (1-\eps)-approximation to the maximum matching in graphs of bounded degree.Comment: Appears in Approx 201

    Node Labels in Local Decision

    Get PDF
    The role of unique node identifiers in network computing is well understood as far as symmetry breaking is concerned. However, the unique identifiers also leak information about the computing environment - in particular, they provide some nodes with information related to the size of the network. It was recently proved that in the context of local decision, there are some decision problems such that (1) they cannot be solved without unique identifiers, and (2) unique node identifiers leak a sufficient amount of information such that the problem becomes solvable (PODC 2013). In this work we give study what is the minimal amount of information that we need to leak from the environment to the nodes in order to solve local decision problems. Our key results are related to scalar oracles ff that, for any given nn, provide a multiset f(n)f(n) of nn labels; then the adversary assigns the labels to the nn nodes in the network. This is a direct generalisation of the usual assumption of unique node identifiers. We give a complete characterisation of the weakest oracle that leaks at least as much information as the unique identifiers. Our main result is the following dichotomy: we classify scalar oracles as large and small, depending on their asymptotic behaviour, and show that (1) any large oracle is at least as powerful as the unique identifiers in the context of local decision problems, while (2) for any small oracle there are local decision problems that still benefit from unique identifiers.Comment: Conference version to appear in the proceedings of SIROCCO 201

    Locally Optimal Load Balancing

    Full text link
    This work studies distributed algorithms for locally optimal load-balancing: We are given a graph of maximum degree Δ\Delta, and each node has up to LL units of load. The task is to distribute the load more evenly so that the loads of adjacent nodes differ by at most 11. If the graph is a path (Δ=2\Delta = 2), it is easy to solve the fractional version of the problem in O(L)O(L) communication rounds, independently of the number of nodes. We show that this is tight, and we show that it is possible to solve also the discrete version of the problem in O(L)O(L) rounds in paths. For the general case (Δ>2\Delta > 2), we show that fractional load balancing can be solved in poly(L,Δ)\operatorname{poly}(L,\Delta) rounds and discrete load balancing in f(L,Δ)f(L,\Delta) rounds for some function ff, independently of the number of nodes.Comment: 19 pages, 11 figure
    corecore