119 research outputs found
A varved lake sediment record of <sup>10</sup>Be solar activity proxy for the Lateglacial-Holocene transition
Solar modulated variations in cosmogenic radionuclide production provide both information on past changes in the activity of the Sun and a global synchronization tool. However, to date the use of cosmogenic radionuclides for these applications is almost exclusively based on 10Be records from ice cores and 14C time-series from tree rings, all including archive-specific limitations. We present the first 10Be record from annually laminated (varved) lake sediments for the Lateglacial-Holocene transition from Meerfelder Maar. We quantify environmental influences on the catchment and, consequently, 10Be deposition using a new approach based on regression analyses between our 10Be record and environmental proxy time-series from the same archive. Our analyses suggest that environmental influences contribute to up to 37% of the variability in our 10Be record, but cannot be the main explanation for major 10Be excursions. Corrected for these environmental influences, our 10Be record is interpreted to dominantly reflect changes in solar modulated cosmogenic radionuclide production. The preservation of a solar production signal in 10Be from varved lake sediments highlights the largely unexplored potential of these archives for solar activity reconstruction, as global synchronization tool and, thus, for more robust paleoclimate studies
Varved sediment responses to early Holocene climate and environmental changes in Lake Meerfelder Maar (Germany) obtained from multivariate analyses of micro X-ray fluorescence core scanning data
We present an early Holocene record from Lake Meerfelder Maar in Germany for in-depth interpretation of depositional changes in annually laminated lake sediments as proxies for climatic and local environmental changes. We characterized the compositional changes in the sediment record using Ward's clustering analyses of the micro X-ray fluorescence core scanning data and linked these to microfacies descriptions. The down-core distribution of the clusters allowed us to define boundaries that represent variations of a comprehensive element assemblage occurring at 11 555, 11 230, 10 650, 10 515 and 9670 varve a BP. Our main results show that during the Early Holocene the long-term vegetation reorganization and evolution of the lake's catchment played a predominant role for sediment deposition. Abrupt shifts occurred at the Younger Dryas/Holocene and the Preboreal/Boreal biostratigraphical boundaries. We do not observe clear signals corresponding to known short-term climatic oscillations described in the North Atlantic region such as the Preboreal Oscillation. A unique and intriguing episode in the history of the lake of predominantly organic deposition and very low amounts of allochthonous sediments occurred between 10 515 and 9670 varve a BP and is related to hydrological thresholds
Synchronizing the Western Gotland Basin (Baltic Sea) and Lake Kälksjön (central Sweden) sediment records using common cosmogenic radionuclide production variations
Multi-archive studies of climate events and archive-specific response times require synchronous time scales. Aligning common variations in the cosmogenic radionuclide production rate via curve fitting methods provides a tool for the continuous synchronization of natural environmental archives down to decadal precision. Based on this approach, we synchronize 10 Be records from Western Gotland Basin (WGB, Baltic Sea) and Lake Kälksjön (KKJ, central Sweden) sediments to the 14 C production time series from the IntCal20 calibration curve during the Mid-Holocene period ~6400 to 5200 a BP. Before the synchronization, we assess and reduce non-production variability in the 10 Be records by using 10 Be/ 9 Be ratios and removing common variability with the TOC record from KKJ sediments based on regression analysis. The synchronizations to the IntCal20 14 C production time scale suggest decadal to multi-decadal refinements of the WGB and KKJ chronologies. These refinements reduce the previously centennial chronological uncertainties of both archives to about ± 20 (WGB) and ±40 (KKJ) years. Combining proxy time series from the synchronized archives enables us to interpret a period of ventilation in the deep central Baltic Sea basins from ~6250 to 6000 a BP as possibly caused by inter-annual cooling reducing vertical water temperature gradients allowing deep water formation during exceptionally cold winters
High resolution lake sediment record reveals self-organized criticality in erosion processes regulated by internal feedbacks
Reconstruction of high‐frequency erosion variability beyond the instrumental record requires well‐dated, high‐resolution proxies from sediment archives. We used computed tomography (CT) scans of finely laminated silt layers from a lake‐sediment record in southwest Oregon to quantify the magnitude of natural landscape erosion events over the last 2000 years in order to compare with palaeorecords of climate, forest fire, and seismic triggers. Sedimentation rates were modeled from an age–depth relationship fit through five 14C dates and the 1964 AD 137Cs peak in which deposition time (yr mm‐1) varied inversely with the proportion of silt sediment measured by the CT profile. This model resulted in pseudo‐annual estimates of silt deposition for the last 2000 years. Silt accumulation during the past 80 years was strongly correlated with river‐discharge at annual and decadal scales, revealing that erosion was highly responsive to precipitation during the logging era (1930–present). Before logging the frequency–magnitude relationship displayed a power‐law distribution that is characteristic of complex feedbacks and self‐regulating mechanisms. The 100‐year and 10‐year erosion magnitude estimated in a 99‐year moving window varied by 1.7 and 1.0 orders of magnitude, respectively. Decadal erosion magnitude was only moderately positively correlated with a summer temperature reconstruction over the period 900–1900 AD. Magnitude of the seven largest events was similar to the cumulative silt accumulation anomaly, suggesting these events ‘returned the system’ to the long‐term mean rate. Instead, the occurrence of most erosion events was related to fire (silt layers preceded by high charcoal concentration) and earthquakes (the seven thickest layers often match paleo‐earthquake dates). Our data show how internal (i.e. sediment production) and external processes (natural fires or more stochastic events such as earthquakes) co‐determine erosion regimes at millennial time scales, and the extent to which such processes can be offset by recent large‐scale deforestation by logging
Laminated lake sediments in northeast Poland: distribution, preconditions for formation and potential for paleoenvironmental investigation
Atmospheric circulation patterns associated with the variability of River Ammer floods: evidence from observed and proxy data
The relationship between the frequency of River Ammer floods (southern Germany) and atmospheric circulation variability is investigated based on observational Ammer River discharge data back to 1926 and a flood layer time series from varved sediments of the downstream Lake Ammer for the pre-instrumental period back to 1766. A composite analysis reveals that, at synoptic timescales, observed River Ammer floods are associated with enhanced moisture transport from the Atlantic Ocean and the Mediterranean towards the Ammer region, a pronounced trough over western Europe as well as enhanced potential vorticity at upper levels. We argue that this synoptic-scale configuration can trigger heavy precipitation and floods in the Ammer region. Interannual to multidecadal increases in flood frequency, as detected in the instrumental discharge record, are associated with a wave train pattern extending from the North Atlantic to western Asia, with a prominent negative center over western Europe. A similar atmospheric circulation pattern is associated with increases in flood layer frequency in the Lake Ammer sediment record during the pre-instrumental period. We argue that the complete flood layer time series from Lake Ammer sediments covering the last 5500 years contains information about atmospheric circulation variability on interannual to millennial timescales
Mittel- bis Spätholozäne Hochwasserrekonstruktion aus zwei warvierten Sedimentkernen des Ammersees
Climate is the principal driving force of hydrological extremes like floods and attributing generating mechanisms is an essential prerequisite for understanding past, present, and future flood variability. Successively enhanced radiative forcing under global warming enhances atmospheric water-holding capacity and is expected to increase the likelihood of strong floods. In addition, natural climate variability affects the frequency and magnitude of these events on annual to millennial time-scales. Particularly in the mid-latitudes of the Northern Hemisphere, correlations between meteorological variables and hydrological indices suggest significant effects of changing climate boundary conditions on floods. To date, however, understanding of flood responses to changing climate boundary conditions is limited due to the scarcity of hydrological data in space and time. Exploring paleoclimate archives like annually laminated (varved) lake sediments allows to fill this gap in knowledge offering precise dated time-series of flood variability for millennia. During river floods, detrital catchment material is eroded and transported in suspension by fluid turbulence into downstream lakes. In the water body the transport capacity of the inflowing turbidity current successively diminishes leading to the deposition of detrital layers on the lake floor. Intercalated into annual laminations these detrital layers can be dated down to seasonal resolution. Microfacies analyses and X-ray fluorescence scanning (µ-XRF) at 200 µm resolution were conducted on the varved Mid- to Late Holocene interval of two sediment profiles from pre-alpine Lake Ammersee (southern Germany) located in a proximal (AS10prox) and distal (AS10dist) position towards the main tributary River Ammer. To shed light on sediment distribution within the lake, particular emphasis was (1) the detection of intercalated detrital layers and their micro-sedimentological features, and (2) intra-basin correlation of these deposits. Detrital layers were dated down to the season by microscopic varve counting and determination of the microstratigraphic position within a varve. The resulting chronology is verified by accelerator mass spectrometry (AMS) 14C dating of 14 terrestrial plant macrofossils. Since ~5500 varve years before present (vyr BP), in total 1573 detrital layers were detected in either one or both of the investigated sediment profiles. Based on their microfacies, geochemistry, and proximal-distal deposition pattern, detrital layers were interpreted as River Ammer flood deposits. Calibration of the flood layer record using instrumental daily River Ammer runoff data from AD 1926 to 1999 proves the flood layer succession to represent a significant time-series of major River Ammer floods in spring and summer, the flood season in the Ammersee region. Flood layer frequency trends are in agreement with decadal variations of the East Atlantic-Western Russia (EA-WR) atmospheric pattern back to 200 yr BP (end of the used atmospheric data) and solar activity back to 5500 vyr BP. Enhanced flood frequency corresponds to the negative EA-WR phase and reduced solar activity. These common links point to a central role of varying large-scale atmospheric circulation over Europe for flood frequency in the Ammersee region and suggest that these atmospheric variations, in turn, are likely modified by solar variability during the past 5500 years. Furthermore, the flood layer record indicates three shifts in mean layer thickness and frequency of different manifestation in both sediment profiles at ~5500, ~2800, and ~500 vyr BP. Combining information from both sediment profiles enabled to interpret these shifts in terms of stepwise increases in mean flood intensity. Likely triggers of these shifts are gradual reduction of Northern Hemisphere orbital summer forcing and long-term solar activity minima. Hypothesized atmospheric response to this forcing is hemispheric cooling that enhances equator-to-pole temperature gradients and potential energy in the troposphere. This energy is transferred into stronger westerly cyclones, more extreme precipitation, and intensified floods at Lake Ammersee. Interpretation of flood layer frequency and thickness data in combination with reanalysis models and time-series analysis allowed to reconstruct the flood history and to decipher flood triggering climate mechanisms in the Ammersee region throughout the past 5500 years. Flood frequency and intensity are not stationary, but influenced by multi-causal climate forcing of large-scale atmospheric modes on time-scales from years to millennia. These results challenge future projections that propose an increase in floods when Earth warms based only on the assumption of an enhanced hydrological cycle.Globale Klimamodelle prognostizieren eine Zunahme von Starkhochwassern infolge der Klimaerwärmung. Weiterhin werden natürliche Klimafaktoren die Intensität und Häufigkeit solcher Ereignisse auf Zeitskalen von Jahren bis Jahrtausenden beeinflussen. Für ein umfassendes Verständnis hochwassergenerierender Klimamechanismen müssen daher lange Zeiträume und regionale Muster in Betracht gezogen werden. Aufgrund der Limitierung der meisten instrumentellen Abflusszeitreihen auf die letzten 100 Jahre, bieten diese nur einen sehr begrenzten Einblick in das Spektrum möglicher Klima-Hochwasser Zusammenhänge. Die Nutzung natürlicher Hochwasserarchive, wie warvierter Seesedimente, erlaubt die Untersuchung von Hochwasseraktivität auf Zeitskalen von Jahrtausenden. Durch Hochwasser in einen See eingetragenes detritisches Material bildet, eingeschaltet in den jährlichen Sedimentationszyklus, eine charakteristische Abfolge von Hochwasserlagen auf dem Seeboden. Das Zählen jährlicher Laminierungen und die Position innerhalb eines jährlichen Sedimentationszyklus ermöglichen die Datierung von Hochwasserlagen mit saisonaler Genauigkeit. Der Ammersee bildet ein ideales Archiv zur Rekonstruktion von Hochwassern. Detritisches Material wird durch nur einen Hauptzufluss, die Ammer, in das rinnenförmige Becken transportiert. Die warvierten Sedimente erlauben eine zuverlässige Detektion und Datierung selbst mikroskopischer Hochwasserlagen. An zwei warvierten Sedimentprofilen des Ammersees sind hochauflösende Mikrofazies und Röntgenfluoreszenz (µ-XRF) Analysen durchgeführt worden. Zum besseren Verständnis der Sedimentverteilung im See lag der Fokus der Untersuchungen auf der Detektion detritischer Lagen anhand ihrer sedimentologischen und geochemischen Eigenschaften und der Korrelation dieser Lagen zwischen beiden Sedimentprofilen. Die Datierung der detritschen Lagen erfolgte durch Warvenzählung und wurde durch AMS Radiokarbondatierungen bestätigt. In den Sedimenten der letzten 5500 Jahre wurden 1573 detritische Lagen gefunden. Aufgrund ihrer Eigenschaften lassen sich diese Lagen als Ammerhochwasserlagen interpretieren: (1) Die Mikrofazies deutet auf eine Ablagerung nach Starkabflussereignissen hin. (2) Die geochemische Zusammensetzung beweist die terrestrische Herkunft des Materials. (3) Das proximal-distale Ablagerungsmuster deutet auf die Ammer als Eintragsquelle des Materials hin. Eine Kalibrierung mit instrumentellen Hochwasserdaten der Ammer im Zeitraum von AD 1926 bis 1999 bestätigt die Sukzession der detritischen Lagen als eine Zeitreihe starker Ammerhochwasser im Frühling und Sommer, der Hochwassersaison am Ammersee. Die Häufigkeit der Hochwasserlagen in den letzten 5500 Jahren weist eine deutliche dekadische Variabilität auf. Trends in der Häufigkeit von Hochwasserlagen korrelieren negativ mit dem Index der East Atlantic-Western Russia Oszillation (EA-WR) während der letzten 250 Jahre (Zeitraum der durch die genutzten atmosphärischen Daten abgedeckt ist) und der solaren Aktivität während des kompletten Zeitraums. Diese Übereinstimmungen deuten möglicherweise auf einen solaren Einfluss auf die atmosphärische Zirkulation über Europa und damit auf die Häufigkeit von Hochwassern am Ammersee hin. Weiterhin weist die Zeitreihe der Hochwasserlagen drei Veränderungen der durchschnittlichen Lagenhäufigkeit und -mächtigkeit vor etwa 5500, 2800 und 500 Jahren auf. Die Kombination der Daten beider Sedimentprofile ermöglicht es, diese Veränderungen als schrittweise Anstiege der Hochwasserintensität zu interpretieren. Vermutliche Auslöser sind graduelle Reduktion der solaren Insolation in der Nordhemisphäre und langfristige Minima der solaren Aktivität. Die wahrscheinliche atmosphärische Reaktion auf dieses Klimaforcing ist ein verstärkter Temperaturgradient zwischen den niederen und hohen Breiten, der zu einer Erhöhung der potenziellen Energie in der Atmosphäre und verstärkter Baroklinität führt. Diese Energie wird transferiert in eine Verstärkung der zyklonalen Westwindzirkulation, extremere Niederschläge und eine Intensivierung der Hochwasser am Ammersee. Die Interpretation der Häufigkeit und Mächtigkeit von Hochwasserlagen in den Sedimenten des Ammersees ermöglicht eine Rekonstruktion der Hochwassergeschichte und die Identifizierung hochwasserauslösender Klimafaktoren in der Ammerseeregion während der letzten 5500 Jahre. Hochwasserhäufigkeit und -intensität sind nicht stationär, sondern durch komplexe Veränderungen im Klimasystem auf Zeitskalen von Jahren bis Jahrtausenden geprägt. In diesem Zusammenhang erscheinen die Resultate globaler Klimamodelle, die einen Anstieg des Hochwasserrisikos allein auf Basis eines thermodynamisch intensivierten hydrologischen Kreislaufs infolge der Klimaerwärmung prognostizieren, als stark simplifiziert
- …
