1,089 research outputs found
Tris+/Na+ permeability ratios of nicotinic acetylcholine receptors are reduced by mutations near the intracellular end of the M2 region
Tris+/Na+ permeability ratios were measured from shifts in the biionic reversal potentials of the macroscopic ACh-induced currents for 3 wild- type (WT), 1 hybrid, 2 subunit-deficient, and 25 mutant nicotinic receptors expressed in Xenopus oocytes. At two positions near the putative intracellular end of M2, 2' (alpha Thr244, beta Gly255, gamma Thr253, delta Ser258) and -1', point mutations reduced the relative Tris+ permeability of the mouse receptor as much as threefold. Comparable mutations at several other positions had no effects on relative Tris+ permeability. Mutations in delta had a greater effect on relative Tris+ permeability than did comparable mutations in gamma; omission of the mouse delta subunit (delta 0 receptor) or replacement of mouse delta with Xenopus delta dramatically reduced relative Tris+ permeability. The WT mouse muscle receptor (alpha beta gamma delta) had a higher relative permeability to Tris+ than the wild-type Torpedo receptor. Analysis of the data show that (a) changes in the Tris+/Na+ permeability ratio produced by mutations correlate better with the hydrophobicity of the amino acid residues in M2 than with their volume; and (b) the mole-fraction dependence of the reversal potential in mixed Na+/Tris+ solutions is approximately consistent with the Goldman- Hodgkin-Katz voltage equation. The results suggest that the main ion selectivity filter for large monovalent cations in the ACh receptor channel is the region delimited by positions -1' and 2' near the intracellular end of the M2 helix
Damping mechanism for the strongly renormalized -axis charge transport in high- cuprate superconductors
We analyze the -axis infrared reflectivity of
LaSrCuO single crystals. The plasma edge near 6 meV,
observed below , is due to Cooper-pair tunneling. This low value of the
plasma edge is consistent with the -axis plasma frequency () obtained
from LDA calculations ( eV) if we take into account that the
single-particle charge transport along the axis is strongly incoherent both
above and below . We find no evidence for a reduction of the -axis
scattering rate () below . Our investigation suggests
, which is exactly opposite to the clean limit.
VSGD.94.6.1Comment: 4 pages, figures on request. Revtex, version 2, Materials Science
Center Internal Report Number VSGD.94.6.
Interstitial Fe-Cr alloys: Tuning of magnetism by nanoscale structural control and by implantation of nonmagnetic atoms
Using the density functional theory, we perform a full atomic relaxation of
the bulk ferrite with 12.5%-concentration of monoatomic interstitial Cr
periodically located at the edges of the bcc Fe cell. We show that
structural relaxation in such artificially engineered alloys leads to
significant atomic displacements and results in the formation of novel highly
stable configurations with parallel chains of octahedrically arranged Fe. The
enhanced magnetic polarization in the low-symmetry metallic state of this type
of alloys can be externally controlled by additional inclusion of nonmagnetic
impurities like nitrogen. We discuss possible applications of generated
interstitial alloys in spintronic devices and propose to consider them as a
basis of novel durable types of stainless steels.Comment: 8 pages, 10 figure
Ab Initio Evidence for the Formation of Impurity d(3z^2-r^2) Holes in Doped La_{2-x}Sr_xCuO_4
Using the spin unrestricted Becke-3-Lee-Yang-Parr density functional, we
computed the electronic structure of explicitly doped La_{2-x}Sr_xCuO_4 (x =
0.125, 0.25, and 0.5). At each doping level, an impurity hole band is formed
within the undoped insulating gap. This band is well-localized to CuO_6
octahedra adjacent to the Sr impurities. The nature of the impurity hole is
A_{1g} in symmetry, formed primarily from the z^2 orbital on the Cu and p_z
orbitals on the apical O's. There is a strong triplet coupling of this hole
with the intrinsic B_{1g} Cu x^2-y^2/O1 p_{sigma} hole on the same site.
Optimization of the c coordinate of the apical O's in the doped CuO_6
octahedron lead to an asymmetric anti-Jahn-Teller distortion of the O2 atoms
toward the central Cu. In particular, the O2 atom between the Cu and Sr is
displaced 0.26 A while the O2 atom between the Cu and La is displaced 0.10 A.
Contrary to expectations, investigation of a 0.1 A enhanced Jahn-Teller
distortion of this octahedron does not force formation of an x^2-y^2 hole, but
instead leads to migration of the z^2 hole to the four other CuO_6 octahedra
surrounding the Sr impurity. This latter observation offers a simple
explanation for the bifurcation of the Sr-O2 distance revealed in x-ray
absorption fine structure data.Comment: Submitted to Phys. Rev. B. See http://www.firstprinciples.com for
more informatio
Nonlinear synthetic unit hydrograph method that accounts for channel network type, A
2018 Spring.Includes bibliographical references.Stormflow hydrographs are commonly estimated using synthetic unit hydrograph (UH) methods, particularly for ungauged basins. Current synthetic UHs either consider very limited aspects of basin geometry or require explicit representation of the basin flow paths. None explicitly considers the channel network type (i.e., dendritic, parallel, pinnate, rectangular, and trellis). The goal of this study is to develop and test a nonlinear synthetic UH that explicitly accounts for the network type. The synthetic UH is developed using kinematic wave travel time expressions for hillslope and channel points in the basin. The effects of the network structure are then isolated into two random variables whose distributions are estimated based on the network type. The proposed method is applied to ten basins from each classification and compared to other related methods. The results suggest that considering network type improves the estimated UHs with the largest improvements seen for dendritic, parallel, and pinnate networks
Threshold electronic structure at the oxygen K edge of 3d transition metal oxides: a configuration interaction approach
It has been generally accepted that the threshold structure observed in the
oxygen K edge X-ray absorption spectrum in 3d transition metal oxides
represents the electronic structure of the 3d transition metal. There is,
however, no consensus about the correct description. We present an
interpretation, which includes both ground state hybridization and electron
correlation. It is based on a configuration interaction cluster calculation
using a MO6 cluster. The oxygen K edge spectrum is calculated by annihilating a
ligand hole in the ground state and is compared to calculations representing
inverse photoemission experiments in which a 3d transition metal electron is
added. Clear differences are observed related to the amount of ligand hole
created in the ground state. Two "rules" connected to this are discussed.
Comparison with experimental data of some early transition metal compounds is
made and shows that this simple cluster approach explains the experimental
features quite well.Comment: 10 pages, submitted to Phys. Rev. B, tried to make a better PS file
Effects of metallic spacer in layered superconducting Sr2(MgTi)O3FeAs
The highly two-dimensional superconducting system
Sr2(MgTi)O3FeAs, recently synthesized in the range of 0.2 < y <
0.5, shows an Mg concentration-dependent . Reducing the Mg concentration
from y=0.5 leads to a sudden increase in , with a maximum ~40 K at
y=0.2. Using first principles calculations, the unsynthesized stoichiometric
y=0 and the substoichiometric y=0.5 compounds have been investigated. For the
50% Mg-doped phase (y=0.5), Sr2(MgTi)O3 layers are completely
insulating spacers between FeAs layers, leading to the fermiology such as that
found for other Fe pnictides. At y=0, representing a phase with metallic
Sr2TiO3 layers, the -centered Fe-derived Fermi surfaces (FSs)
considerably shrink or disappear. Instead, three -centered Ti FSs
appear, and in particular two of them have similar size, like in MgB2.
Interestingly, FSs have very low Fermi velocity in large fractions: the lowest
being 0.6 cm/s. Furthermore, our fixed spin moment calculations
suggest the possibility of magnetic ordering, with magnetic Ti and nearly
nonmagnetic Fe ions. These results indicate a crucial role of
Sr2(MgTi)O3 layers in this superconductivity.Comment: 7 pages; Proceedings of ICSM-201
Diabetes status and post-load plasma glucose concentration in relation to site-specific cancer mortality: findings from the original Whitehall study
ObjectiveWhile several studies have reported on the relation of diabetes status with pancreatic cancer risk, the predictive value of this disorder for other malignancies is unclear. Methods: The Whitehall study, a 25year follow-up for mortality experience of 18,006 men with data on post-challenge blood glucose and self-reported diabetes, allowed us to address these issues. Results: There were 2158 cancer deaths at follow-up. Of the 15 cancer outcomes, diabetes status was positively associated with mortality from carcinoma of the pancreas and liver, while the relationship with lung cancer was inverse, after controlling for a range of potential covariates and mediators which included obesity and socioeconomic position. After excluding deaths occurring in the first 10years of follow-up to examine the effect of reverse causality, the magnitude of the relationships for carcinoma of the pancreas and lung was little altered, while for liver cancer it was markedly attenuated. Conclusions: In the present study, diabetes status was related to pancreatic, liver, and lung cancer risk. Cohorts with serially collected data on blood glucose and covariates are required to further examine this area
- …
