15,860 research outputs found

    Adiabatic pumping through a quantum dot in the Kondo regime: Exact results at the Toulouse limit

    Full text link
    Transport properties of ultrasmall quantum dots with a single unpaired electron are commonly modeled by the nonequilibrium Kondo model, describing the exchange interaction of a spin-1/2 local moment with two leads of noninteracting electrons. Remarkably, the model possesses an exact solution when tuned to a special manifold in its parameter space known as the Toulouse limit. We use the Toulouse limit to exactly calculate the adiabatically pumped spin current in the Kondo regime. In the absence of both potential scattering and a voltage bias, the instantaneous charge current is strictly zero for a generic Kondo model. However, a nonzero spin current can be pumped through the system in the presence of a finite magnetic field, provided the spin couples asymmetrically to the two leads. Tunneling through a Kondo impurity thus offers a natural mechanism for generating a pure spin current. We show, in particular, that one can devise pumping cycles along which the average spin pumped per cycle is closely equal to \hbar. By analogy with Brouwer's formula for noninteracting systems with two driven parameters, the pumped spin current is expressed as a geometrical property of a scattering matrix. However, the relevant %Alex: I replaced topological with geometrical in the sentence above scattering matrix that enters the formulation pertains to the Majorana fermions that appear at the Toulouse limit rather than the physical electrons that carry the current. These results are obtained by combining the nonequilibrium Keldysh Green function technique with a systematic gradient expansion, explicitly exposing the small parameter controlling the adiabatic limit.Comment: 14 pages, 3 figures, revised versio

    The Wishart short rate model

    Full text link
    We consider a short rate model, driven by a stochastic process on the cone of positive semidefinite matrices. We derive sufficient conditions ensuring that the model replicates normal, inverse or humped yield curves

    Synchrotron oscillation damping due to beam-beam collisions

    Get PDF
    In DA{\Phi}NE, the Frascati e+/e- collider, the crab waist collision scheme has been successfully implemented in 2008 and 2009. During the collision operations for Siddharta experiment, an unusual synchrotron damping effect has been observed. Indeed, with the longitudinal feedback switched off, the positron beam becomes unstable with beam currents in the order of 200-300 mA. The longitudinal instability is damped by bringing the positron beam in collision with a high current electron beam (~2A). Besides, we have observed a shift of \approx 600Hz in the residual synchrotron sidebands. Precise measurements have been performed by using both a commercial spectrum analyzer and the diagnostics capabilities of the DA{\Phi}NE longitudinal bunch-by-bunch feedback. This damping effect has been observed in DA{\Phi}NE for the first time during collisions with the crab waist scheme. Our explanation is that beam collisions with a large crossing angle produce a longitudinal tune shift and a longitudinal tune spread, providing Landau damping of synchrotron oscillations.Comment: 3 pages, 5 figures, talk presented to IPAC'10 - Kyoto - May 24-28 201

    Opinion formation models based on game theory

    Get PDF
    A way to simulate the basic interactions between two individuals with different opinions, in the context of strategic game theory, is proposed. Various games are considered, which produce different kinds of opinion formation dynamics. First, by assuming that all individuals (players) are equals, we obtain the bounded confidence model of continuous opinion dynamics proposed by Deffuant et al. In such a model a tolerance threshold is defined, such that individuals with difference in opinion larger than the threshold can not interact. Then, we consider that the individuals have different inclinations to change opinion and different abilities in convincing the others. In this way, we obtain the so-called ``Stubborn individuals and Orators'' (SO) model, a generalization of the Deffuant et al. model, in which the threshold tolerance is different for every couple of individuals. We explore, by numerical simulations, the dynamics of the SO model, and we propose further generalizations that can be implemented.Comment: 18 pages, 4 figure

    Brans-Dicke gravity and the capture of stars by black holes: some asymptotic results

    Full text link
    In the context of star capture by a black hole, a new noticeable difference between Brans-Dicke theory and general relativity gravitational radiation is pointed out. This feature stems from the non-stationarity of the black hole state, barring Hawking's theorem.Comment: 4 pages. Submitted to Classical and Quantum Gravit

    Signal processing by opto-optical interactions between self-localized and free propagating beams in liquid crystals

    Full text link
    The reorientational nonlinearity of nematic liquid crystals enables a self-localized spatial soliton and its waveguide to be deflected or destroyed by a control beam propagating across the cell. We demonstrate a simple all-optical readdressing scheme by exploiting the lens-like perturbation induced by an external beam on both a nematicon and a co-polarized guided signal of different wavelength. Angular steering as large as 2.2 degrees was obtained for control powers as low as 32mW in the near infrared

    Collective oscillations in disordered neural networks

    Get PDF
    We investigate the onset of collective oscillations in a network of pulse-coupled leaky-integrate-and-fire neurons in the presence of quenched and annealed disorder. We find that the disorder induces a weak form of chaos that is analogous to that arising in the Kuramoto model for a finite number N of oscillators [O.V. Popovych at al., Phys. Rev. E 71} 065201(R) (2005)]. In fact, the maximum Lyapunov exponent turns out to scale to zero for N going to infinite, with an exponent that is different for the two types of disorder. In the thermodynamic limit, the random-network dynamics reduces to that of a fully homogenous system with a suitably scaled coupling strength. Moreover, we show that the Lyapunov spectrum of the periodically collective state scales to zero as 1/N^2, analogously to the scaling found for the `splay state'.Comment: 8.5 Pages, 12 figures, submitted to Physical Review

    Streaming Motions Towards the Supermassive Black Hole in NGC 1097

    Get PDF
    We have used GMOS-IFU and high resolution HST-ACS observations to map, in unprecedented detail, the gas velocity field and structure within the 0.7 kpc circumnuclear ring of the SBb LINER/Seyfert 1 galaxy NGC 1097. We find clear evidence of radial streaming motions associated with spiral structures leading to the unresolved (<3.5 parsecs) nucleus, which we interpret as part of the fueling chain by which gas is transported to the nuclear starburst and supermassive black hole.Comment: 4 pages, 3 figures using emulateapj. Accepted for publication in Astrophysical Journal Letters. Download high-resolution version from http://www.astro.uu.se/~kambiz/DOC/paper-N1097.pd

    The depletion in Bose Einstein condensates using Quantum Field Theory in curved space

    Get PDF
    Using methods developed in Quantum Field Theory in curved space we can estimate the effects of the inhomogeneities and of a non vanishing velocity on the depletion of a Bose Einstein condensate within the hydrodynamical approximation.Comment: 4 pages, no figure. Discussion extended and references adde

    Dynamical response of the Hodgkin-Huxley model in the high-input regime

    Full text link
    The response of the Hodgkin-Huxley neuronal model subjected to stochastic uncorrelated spike trains originating from a large number of inhibitory and excitatory post-synaptic potentials is analyzed in detail. The model is examined in its three fundamental dynamical regimes: silence, bistability and repetitive firing. Its response is characterized in terms of statistical indicators (interspike-interval distributions and their first moments) as well as of dynamical indicators (autocorrelation functions and conditional entropies). In the silent regime, the coexistence of two different coherence resonances is revealed: one occurs at quite low noise and is related to the stimulation of subthreshold oscillations around the rest state; the second one (at intermediate noise variance) is associated with the regularization of the sequence of spikes emitted by the neuron. Bistability in the low noise limit can be interpreted in terms of jumping processes across barriers activated by stochastic fluctuations. In the repetitive firing regime a maximization of incoherence is observed at finite noise variance. Finally, the mechanisms responsible for spike triggering in the various regimes are clearly identified.Comment: 14 pages, 24 figures in eps, submitted to Physical Review
    corecore