157 research outputs found
Swift-XRT 6-year monitoring of the ultraluminous X-ray source M33-X8
The long term evolution of ULX with their spectral and luminosity variations
in time give important clues on the nature of ULX and on the accretion process
that powers them. We report here the results of a Swift-XRT 6-year monitoring
campaign of the closest example of a persistent ULX, M33 X-8, that extends to
16 years the monitoring of this source in the soft X-rays. The luminosity of
this source is a few 10^39 erg/s, marking the faint end of the ULX luminosity
function. We analysed the set of 15 observations collected during the Swift
monitoring. We searched for differences in the spectral parameters at different
observing epochs, adopting several models commonly used to fit the X-ray
spectra of ULX. The source exhibits flux variations of the order of 30%. No
significant spectral variations are observed along the monitoring. The average
0.5-10 keV spectrum can be well described by a thermal model, either in the
form of a slim disk, or as a combination of a Comptonized corona and a standard
accretion disk.Comment: 6 pages, 4 figures, 2 tables. Paper published in A&
Swift reveals the eclipsing nature of the high mass X-ray binary IGR~J16195-4945
IGR J16195-4945 is a hard X-ray source discovered by INTEGRAL during the Core
Program observations performed in 2003. We analyzed the X-ray emission of this
source exploiting the Swift-BAT survey data from December 2004 to March 2015,
and all the available Swift-XRT pointed observations. The source is detected at
a high significance level in the 123-month BAT survey data, with an average
15-150 keV flux of the source of ~1.6 mCrab. The timing analysis on the BAT
data reveals with a significance higher than 6 standard deviations the presence
of a modulated signal with a period of 3.945 d, that we interpret as the
orbital period of the binary system. The folded light curve shows a flat
profile with a narrow full eclipse lasting ~3.5% of the orbital period. We
requested phase-constrained XRT observations to obtain a more detailed
characterization of the eclipse in the soft X-ray range. Adopting resonable
guess values for the mass and radius of the companion star, we derive a
semi-major orbital axis of ~31 R_sun, equivalent to ~1.8 times the radius of
the companion star. From these estimates and from the duration of the eclipse
we derive an orbital inclination between 55 and 60 degrees. The broad band
time-averaged XRT+BAT spectrum is well modeled with a strongly absorbed flat
power law, with absorbing column N_H=7x 10^22 cm^(-2) and photon index
Gamma=0.5, modified by a high energy exponential cutoff at E_cut=14 keV.Comment: 5 pages, 5 figures, 2 tables. Published on MNRA
Chandra X-ray spectroscopy of a clear dip in GX 13+1
The source GX 13+1 is a persistent, bright Galactic X-ray binary hosting an
accreting neutron star. It shows highly ionized absorption features, with a
blueshift of 400 km s and an outflow-mass rate similar to the
accretion rate. Many other X-ray sources exhibit warm absorption features, and
they all show periodic dipping behavior at the same time. Recently, a dipping
periodicity has also been determined for GX 13+1 using long-term X-ray folded
light-curves, leading to a clear identification of one of such periodic dips in
an archival Chandra observation. We give the first spectral characterization of
the periodic dip of GX 13+1 found in this archival Chandra observation
performed in 2010. We used Chandra/HETGS data (1.0-10 keV band) and
contemporaneous RXTE/PCA data (3.5-25 keV) to analyze the broadband X-ray
spectrum. We adopted different spectral models to describe the continuum
emission and used the XSTAR-derived warm absorber component to constrain the
highly ionized absorption features. The 1.0-25 keV continuum emission is
consistent with a model of soft accretion-disk emission and an optically thick,
harder Comptonized component. The dip event, lasting 450 s, is
spectrally resolved with an increase in the column density of the neutral
absorber, while we do not find significant variations in the column density and
ionization parameter of the warm absorber with respect to the out-of-dip
spectrum. We argue that the very low dipping duty-cycle with respect to other
sources of the same class can be ascribed to its long orbital period and the
mostly neutral bulge, that is relatively small compared with the dimensions of
the outer disk radius.Comment: 13 pages, 15 figures, accepted for publication in Astronomy and
Astrophysic
Temporal features of LS I +61303 in hard X-rays from the Swift/BAT survey data
We study the long-term spectral and timing behaviour of LS I +61303
in hard X-rays (15--150 keV) using 10 years of survey data from the
Burst Alert Telescope (BAT) monitor. We focus on the detection of long
periodicities known to be present in this source in multiple wavelengths. We
clearly detect three periods: the shorter one at 26.48 days is compatible with
the orbital period of the system; the second, longer, periodicity at 26.93
days, is detected for the first time in X-rays and its value is consistent with
an analogous temporal feature recently detected in the radio and in the
gamma-ray waveband, and we associate it with a modulation caused by a
precessing jet in this system. Finally, we find also evidence of the long-term
periodicity at 1667 d, that results compatible with a beat frequency of
the two close, and shorter, periodicities. We discuss our results in the
context of the multi-band behaviour of the physical processes of this source.Comment: 5 pages, 8 figures. Published in MNRA
Timing of the accreting millisecond pulsar IGR~J17511--3057
{Timing analysis of Accretion-powered Millisecond Pulsars (AMPs) is a
powerful tool to probe the physics of compact objects. The recently discovered
\newigrj is the 12 discovered out of the 13 AMPs known. The Rossi XTE satellite
provided an extensive coverage of the 25 days-long observation of the source
outburst.} {Our goal is to investigate the complex interaction between the
neutron star magnetic field and the accretion disk, determining the angular
momentum exchange between them. The presence of a millisecond coherent flux
modulation allows us to investigate such interaction from the study of pulse
arrival times. In order to separate the neutron star proper spin frequency
variations from other effects, a precise set of orbital ephemeris is
mandatory.} {Using timing techniques, we analysed the pulse phase delays
fitting differential corrections to the orbital parameters. To remove the
effects of pulse phase fluctuations we applied the timing technique already
successfully applied to the case of an another AMP, XTE J1807-294.} {We report
a precise set of orbital ephemeris. We demonstrate that the companion star is a
main sequence star. We find pulse phase delays fluctuations on the first
harmonic with a characteristic amplitude of about 0.05, similar to what also
observed in the case of the AMP XTE J1814-338. For the second time an AMP shows
a third harmonic detected during the entire outburst. The first harmonic phase
delays show a puzzling behaviour, while the second harmonic phase delays show a
clear spin-up. Also the third harmonic shows a spin-up, although not highly
significant (3 c.l.). The presence of a fourth harmonic is also
reported. In the hypothesis that the second harmonic is a good tracer of the
spin frequency of the neutron star, we find a mean spin frequency derivative
for this source of \np{1.65(18)}{-13} Hz s.} (continue ...)Comment: 9 pages, 12 figures, A&A accepted on 23/10/201
X-ray spectroscopy of the ADC source X1822-371 with Chandra and XMM-Newton
The eclipsing low-mass X-ray binary X1822-371 is the prototype of the
accretion disc corona (ADC) sources. We analyse two Chandra observations and
one XMM-Newton observation to study the discrete features and their variation
as a function of the orbital phase, deriving constraints on the temperature,
density, and location of the plasma responsible for emission lines. The HETGS
and XMM/Epic-pn observed X1822-371 for 140 and 50 ks, respectively. We
extracted an averaged spectrum and five spectra from five selected
orbital-phase intervals that are 0.04-0.25, 0.25-0.50, 0.50-0.75, 0.75-0.95,
and, finally, 0.95-1.04; the orbital phase zero corresponds to the eclipse
time. All spectra cover the energy band between 0.35 and 12 keV. We confirm the
presence of local neutral matter that partially covers the X-ray emitting
region; the equivalent hydrogen column is cm and the
covered fraction is about 60-65%. We identify emission lines from highly
ionised elements, and a prominent fluorescence iron line associated with a
blending of FeI-FeXV resonant transitions. The transitions of He-like ions show
that the intercombination dominates over the forbidden and resonance lines. The
line fluxes are the highest during the orbital phases between 0.04 and 0.75. We
discuss the presence of an extended, optically thin corona with optical depth
of about 0.01 that scatters the X-ray photons from the innermost region into
the line of sight. The photoionised plasma producing most of the observed lines
is placed in the bulge at the outer radius of the disc distant from the central
source of cm. The OVII and the fluorescence iron line are
probably produced in the photoionised surface of the disc at inner radii.
(Abridged)Comment: 18 pages including 12 figures. Accepted for publication in A&
- …
